Sample Homework for Derivatives
Forfatter
Scott Brewer
Sidst opdateret
5 år siden
Licens
Creative Commons CC BY 4.0
Resumé
Sample Homework for Derivatives
Sample Homework for Derivatives
\documentclass[letterpaper,11pt]{article}
\usepackage[margin=1 in]{geometry}
\usepackage{calc}
\usepackage{amsmath, mathtools, comment, graphicx, fancyhdr, color, setspace, multicol, hyperref}
\usepackage{tikz,tikz-3dplot,pgfplots}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{latexsym}
\usepackage{epsfig}
\usepackage{amscd}
\usepackage{arydshln}
\usepackage{graphicx}
\usepackage{pst-plot}
\usepackage{pst-math}
\parskip = 0.2in
\def\ds{\displaystyle}
\newif\ifsolutions
\solutionsfalse
\ifsolutions
\newcommand{\tsol}[1]{\textcolor{red}{#1}}
\else
\newcommand{\tsol}[1]{\textcolor{white}{#1}}
\fi
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center} {\large \textbf{CALCULUS SAMPLE HW DERIVATIVES}}
\end{center}
{ \textbf{Name:} \underline{\hspace{8cm}}
\medskip
\textbf{Score:} \underline{\hspace{8cm}}}
\bigskip
\bigskip
\bigskip
\noindent \textbf{(1)} Find the derivative of each of the following functions. You do not need to simplify your answers.
\vspace{.5cm}
\noindent \textbf{(a)} $f(x) = \ds \frac{\cos ^8 (x)}{(e^x)^{-2}}$
\vspace{3cm}
\noindent \textbf{(b)} $f(x) = \tan (\sin ( x^2+1))$
\vspace{3cm}
\noindent \textbf{(c)} $f(x) = \sqrt{\sin ^2(x) + \cos ^2(x)}$
\vspace{3cm}
\noindent \textbf{(e)} $f(x) = 2^{\sin (x)}$
\newpage
\noindent \textbf{(2)} Find the equation of the tangent line to the graph of $f(x) = \ds \tan (e^{x^2})$ at the point where $x=0$. You may leave your answer in point-slope form.
\vspace{5cm}
\noindent \textbf{(3)} Find $y'$ (equivalently, $\ds \frac{dy}{dx}$) using implicit differentiation:
\noindent \textbf{(a)} $\sin(x - y) = xy$
\vspace{5cm}
\noindent \textbf{(b)} $e^{x+y} = y$
\newpage
\noindent \textbf{(4)} Find the slope of the tangent line to the graph of $x^2+y^2 = 5$ at the point $(1,2)$.
\vspace{7cm}
\noindent \textbf{(5)} If $f(x) = x^5$ and $g$ is its inverse function. Find $g'(y_0)$ if $y_0 = 32$.
\vspace{4cm}
\noindent \textbf{(6)} Find the derivative of $f(x) = \sin ^{-1}(4x)$.
\end{document}