Lineare Algebra Mitschrieb
Forfatter:
Craftgoll
Sidst opdateret:
10 år siden
Licens:
Creative Commons CC BY 4.0
Resumé:
Mathe KIT
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\documentclass[11pt]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{amssymb}
%Gummi|065|=)
\title{\textbf{Lineare Algebra Mitschrieb}}
\author{Maik Wild}
\date{October 27, 2014}
\begin{document}
\maketitle
\section*{Definition 2.2}
Eine Abbildung
$f: X\to Y$ heißt injektiv, wenn keine zwei Elemente in $X$ auf dasselbe Element in $Y$ abgebildet werden, daher:\\
$\forall x,x\in X f(x)=f('x)\Rightarrow x=x'$ \\
Dies ist äquivalent zu $\forall x, x' \in X:x
eq x'\Rightarrow f(x)
eq f(x')$\\
Die Abbildung $f$ heißt surjektiv, wenn jedes $y\in Y$ ein Urbild $x$ besitz, also $f(x)=y$; daher $f(x)=Y$ oder \\
$\forall y \in Y \exists x \in X: f(x)=y$.\\
Eine Abbildung, welche injektiv und surjektiv ist, heißt bijektiv. \\
\[Schaubild 1\]
\\
Beispiel: Für jede nichtleere Menge $X$ existiert die identische Abbildung \\id$_{x}: X\to X, x \mapsto x$ ist injektiv und surjektiv, also bijektiv.
\section*{Definition 2.3}
Es seien $f:X\to Y$ und $g: Y\to z$ Abbildungen. Dann heißt $g\circ f$ $X\to Z x \mapsto g(f(x))$ die Komposition von $g$ nach $f$.
\section*{Proposition 2.4}
Es seien $f: X\to Y,$ $g: Y\to Z$ und $h:Z \to W$ Abbildungen. Dann gilt \\
$(h\circ g)\circ f=h\circ (g \circ f)$ \\
Beweis:
*Hier beweis einfügen*
\section*{Definition 2.5}
Es sei $f: X\to Y$ eine biektive Abbildung. Dann heißt die Abbildung \\$f^{-1}:Y\to X, y=f(x) \mapsto x$ die zu $f$ inverse Abbildung.
\\Bemerkung:
\\1) Obige Abbildungsvorschrift ist nur für bijetive Abbildungen erklärt
\\2) Es gelten $f^{-1} \circ f=id_{x}$ und $f\circ f{-1}=id_y.$\\
Sind $X,Y$ Mengen so bezeichnet Abbildung $(X,Y)$ die Menge aller Abbildungen von $x$ nach $y$ und Bij$(X,Y)$ jene aller bijectiven Abbildungen, es gilt Bij$(X,Y)\subseteq$ Abbildung$(X,Y)$.\\
\section*{I.3 Relationen}
\section*{Definition 3.1}
Eine Relation $R$ auf Megen $A$ und $B$ ist eine Teilmenge $R \subseteq A \times B$.\\
Man notiert $aRb$, falls $(a,b)\in R$ gilt, oder sogar $a\sim b,a \le b$\\
Beispiel:\\
1) Auf $\mathbb{R}$ und $\mathbb{R}$ die Ordnungsrelation $(x\le y)$\\
2) $A:A\to B$ definiert eine Relation $R_{f}(a,b)\in R_{f} \Leftrightarrow b=f(a)[R_{f}$ ist Graf von $A]$
\section*{Definition 3.2}
Eine Relation $\sim$ auf $X$ heißt Äquivalenzrelation, wenn die folgenden Bedingungen erfüllt sind:\\\\
(i) Reflexivität: Für alle $x\in X$ gilt $x\sim x$.\\
(ii) Symetrie: Aus $x\sim y$ folgt $y \sim x$.\\
(iii) Transitivität: Aus $x\sim y$ und $y \sim z$ folgt $x\sim z$.\\\\
Für jedes $x\in X$ heißt $[x]_{\sim}=\{ y \in X \mid y \in y\} \subseteq X$ die Äquivalenzklasse von $x$. \\
Die Menge der Äquivalenzklassen $X/\sim =\{[x]_{\sim} \mid x\in X\}$ nennt man Quotientenmenge von X nach $\sim$.\\
Die Abbildung $\pi_{\sim} : X \to X/\sim$ $x \to [x]$ nennt man die Quotientenabbildung oder kanonische Projetion\\
Beispiel:\\
Es sei n $\in \mathbb{N}$. Auf $\mathbb{Z}$ wird eine Relation $\equiv_{n}$ wie folgt definiert: Es gilt genau dann $x\equiv_{n}$ $y$, wenn n die Differenz $x-y$ teilt; daher wenn ein $k \in \mathbb{Z}$ existiert mit $k\cdot n=x-y$.
%Ab hier hatte ich keinen Bock mehr :D
\end{document}