Herschel enneahedron net
Sidst opdateret:
11 år siden
Licens:
Other (as stated in the work)
Resumé:
Herschel enneahedron net
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
%\title{Herschel enneahedron net}
% Herschel enneahedron net, by Christian Perfect 2013.
% With Dr Michael White and Yameng Ji
\documentclass[10pt]{article}
\usepackage{pgf,tikz}
\usepackage[hidelinks]{hyperref}
\usepackage{relsize}
\usepackage[margin=1cm,landscape,paper=a4paper]{geometry}
\usetikzlibrary{arrows}
\usetikzlibrary{calc}
\tikzset{fontscale/.style = {font=\sffamily \relsize{#1}}}
\pagestyle{empty}
\begin{document}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=6.6cm,y=6.6cm,font=\sffamily]
\draw [line width=1pt]
(0.25,-0.66) -- (-0.41,-0.91) -- (-0.66,-0.25) --
(0,0) -- (0.25,0.22) -- (-0.05,0.37) --
(0.03,1.07) -- (0.61,1.48) -- (1.02,0.9) --
(0.44,0.5) -- (1.13,0.33) -- (1.46,-0.29) --
(1.71,-0.51) -- (1.82,-0.2) -- (2.53,-0.19) --
(2,-0.67) -- (1.92,-1.37) -- (1.52,-0.79) --
(0.83,-0.63) -- (0.5,0) -- (0.25,-0.66);
\draw [line width=1pt,dash pattern=on 6pt off 6pt] (0.5,0)-- (0.25,0.22);
\draw [line width=1pt,dash pattern=on 6pt off 6pt] (0,0)-- (0.25,-0.66);
\draw [line width=1pt,dash pattern=on 6pt off 6pt] (1.13,0.33)-- (0.5,0);
\draw [line width=1pt,dash pattern=on 6pt off 6pt] (0.25,0.22)-- (0.44,0.5);
\draw [line width=1pt,dash pattern=on 6pt off 6pt] (0.83,-0.63)-- (1.46,-0.29);
\draw [line width=1pt,dash pattern=on 6pt off 6pt] (0.03,1.07)-- (0.44,0.5);
\draw [line width=1pt,dash pattern=on 6pt off 6pt] (1.71,-0.51)-- (1.52,-0.79);
\draw [line width=1pt,dash pattern=on 6pt off 6pt] (2,-0.67)-- (1.71,-0.51);
\node at (2.5,0.7) [fontscale=1] {\begin{minipage}{0.4\textwidth}
\setlength{\parskip}{1ex}
{\Huge Herschel enneahedron net}
by Christian Perfect
This is the smallest \textit{non-Hamiltonian} \mbox{polyhedron} -- you can't draw a path starting and ending at the same vertex which visits each vertex exactly once.
It's also the only enneahedron (nine-faced solid) in which every face has the same number of edges, and is one of only three \textit{bipartite} enneahedra.
The Herschel enneahedron has $D_6$ symmetry -- the symmetries of a regular hexagon.
There's some more information on how this shape was \mbox{constructed} at
\begin{center}
\mbox{\url{http://bit.ly/herschelgraph}}
\end{center}
\end{minipage}
};
\end{tikzpicture}
\end{document}