Example: Theorems and Proofs
Sidst opdateret:
11 år siden
Licens:
Other (as stated in the work)
Resumé:
Example: Theorems and Proofs
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
%
% This example is based on:
% http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/Theorems.html
%
\documentclass[a4paper]{article}
\usepackage[english]{babel}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,amsthm}
\title{Example: Theorems and Proofs}
\author{WriteLaTeX}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\begin{document}
\maketitle
\begin{definition}
Let $H$ be a subgroup of a group~$G$. A \emph{left coset}
of $H$ in $G$ is a subset of $G$ that is of the form $xH$,
where $x \in G$ and $xH = \{ xh : h \in H \}$.
Similarly a \emph{right coset} of $H$ in $G$ is a subset
of $G$ that is of the form $Hx$, where
$Hx = \{ hx : h \in H \}$
\end{definition}
Note that a subgroup~$H$ of a group $G$ is itself a
left coset of $H$ in $G$.
\begin{lemma}
\label{LeftCosetsDisjoint}
Let $H$ be a subgroup of a group $G$, and let $x$ and $y$ be
elements of $G$. Suppose that $xH \cap yH$ is non-empty.
Then $xH = yH$.
\end{lemma}
\begin{proof}
Let $z$ be some element of $xH \cap yH$. Then $z = xa$
for some $a \in H$, and $z = yb$ for some $b \in H$.
If $h$ is any element of $H$ then $ah \in H$ and
$a^{-1}h \in H$, since $H$ is a subgroup of $G$.
But $zh = x(ah)$ and $xh = z(a^{-1}h)$ for all $h \in H$.
Therefore $zH \subset xH$ and $xH \subset zH$, and thus
$xH = zH$. Similarly $yH = zH$, and thus $xH = yH$,
as required.
\end{proof}
\begin{lemma}
\label{SizeOfLeftCoset}
Let $H$ be a finite subgroup of a group $G$. Then each left
coset of $H$ in $G$ has the same number of elements as $H$.
\end{lemma}
\begin{proof}
Let $H = \{ h_1, h_2,\ldots, h_m\}$, where
$h_1, h_2,\ldots, h_m$ are distinct, and let $x$ be an
element of $G$. Then the left coset $xH$ consists of
the elements $x h_j$ for $j = 1,2,\ldots,m$.
Suppose that $j$ and $k$ are integers between
$1$ and $m$ for which $x h_j = x h_k$. Then
$h_j = x^{-1} (x h_j) = x^{-1} (x h_k) = h_k$,
and thus $j = k$, since $h_1, h_2,\ldots, h_m$
are distinct. It follows that the elements
$x h_1, x h_2,\ldots, x h_m$ are distinct.
We conclude that the subgroup~$H$ and the left
coset $xH$ both have $m$ elements,
as required.
\end{proof}
\begin{theorem}
\emph{(Lagrange's Theorem)}
\label{Lagrange}
Let $G$ be a finite group, and let $H$ be a subgroup
of $G$. Then the order of $H$ divides the order of $G$.
\end{theorem}
\begin{proof}
Each element~$x$ of $G$ belongs to at least one left coset
of $H$ in $G$ (namely the coset $xH$), and no element
can belong to two distinct left cosets of $H$ in $G$
(see Lemma~\ref{LeftCosetsDisjoint}). Therefore every
element of $G$ belongs to exactly one left coset of $H$.
Moreover each left coset of $H$ contains $|H|$ elements
(Lemma~\ref{SizeOfLeftCoset}). Therefore $|G| = n |H|$,
where $n$ is the number of left cosets of $H$ in $G$.
The result follows.
\end{proof}
\end{document}