yzengmath1
Forfatter:
SaraZeng
Sidst opdateret:
11 år siden
Licens:
Creative Commons CC BY 4.0
Resumé:
Math project......
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\documentclass[12pt]{article}
\usepackage{geometry}
\pagestyle{empty}
\geometry{letterpaper}
\usepackage[parfill]{parskip}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{mathrsfs}
\usepackage{epstopdf}
\everymath{\displaystyle}
\textwidth = 7 in
\textheight = 8 in
\oddsidemargin = 0.0 in
\evensidemargin = 0.0 in
\topmargin = 0.0 in
\headheight = 0.0 in
\headsep = 0.0 in
\parskip = 0.1in
\parindent = 0.0in
\begin{document}
\section{How To Simplify Fractions to the Lowest Term \\ Ye Zeng}
\centerline{\includegraphics[scale=0.8]{yzengimg1.jpg}}
%Please list key words here. Use a new \item for each word. Please provide a short definition of each key word.
\subsection{Key Words}
\begin{itemize}
\item {\bf Polynomials} - An expression that can have constants, variables and exponents. \\
E.g. $5xy^2 - 3x + 5y^3 - 3$
\item {\bf Lowest term} - The numerator and denominator of a fraction have no common factor except number one.\\
E.g. $\frac{3}{5x}$
\item {\bf Numerator} - The top part of a fraction.
\item {\bf Denominator} - The bottom part of a fraction.
\end{itemize}
%Please put your sample problem below. It should sound like a test question and should be taken from a sample test, quiz or homework.
\subsection{Sample Question}
Which of the following shows the expression $\frac{3x}{10x+x^2}$ reduced to the lowest terms?
A. $\frac{3x}{10+x}$
B. $\frac{3}{10+x}$
C. $\frac{1}{7+x}$
D. $\frac{3}{10x}$
%Please show all work in your sample solution. Use colors where appropriate. Do not have too much information on one line (no more than 2 equal signs on any given line). Make sure your solution is correct
\subsection{Solution}
The answer is {\bf B}.
{\bf Steps to solve this question}
\begin{enumerate}
\item Combine like-terms.\\
$\frac{3x}{x(10+x)}$
\item Cancel x (the common factor) in both numerator and denominator.\\
$\frac{3}{10+x}$
\end{enumerate}
%You should have one step for each equal sign in your solution. Please use appropriate vocabulary and be as specific as possible. Again one \item for each step.
\subsection{Steps to Solve This Kind of Problem}
\begin{enumerate}
\item Always combine like-terms first.
\item Canceled if there is a common factor in both numerator and denominator.
\item If there's no common factor, that's the lowest term.
\end{enumerate}
\subsection{Challange Question}
{\bf Challenge Question}
\begin{center}
$\frac{3(x+1)}{x^2-1}$\\
\end{center}
{\bf Solution}
\begin{enumerate}
\item Factorization\\
$\frac{3(x+1)}{(x+1)(x-1)}$\\
\item Cancel $(x+1)$ in both numerator and denominator.\\
$\frac{3}{x-1}$
\end{enumerate}
%Please add any other notes or important things to remember when solving this type of problem.
\subsection{Notes/other things to remember}
\begin{itemize}
\item $\frac{a^m}{a^n}$ = $a^{m - n}$
\item $({a^m})^{n}$ = ${a}^{mn}$
\item $\frac{am - an}{a}$
= $\frac{a(m - n)}{a}$
= $m - n$
\item $(x+y)^2$ = $x^2 + 2xy + y^2$
\item $(x-y)^2$ = $x^2 - 2xy + y^2$
\item $(x^2 - 1)$ = $(x+1)(x-1)$
\item $x^3-1$ = $(x-1)(x^2+x+1)$
\item $x^3+1$ = $(x+1)(x^2-x+1)$
\end{itemize}
\end{document}