overleaf skabelonsgalleriCommunity articles — Recent
Artikler, præsentationer, rapporter m.fl, skrevet i LaTeX og udgivet af vores fællesskab.

se presenta el desarrollo de un algoritmo bajo código fuente JavaScript para la solución de la ecuación de flujo crítico (2). Se implementó un lenguaje de programación orientado a objetos para sistemas Android 4.0 o superiores a partir de procesos iterativos e incrementales (Desarrollo ágil). Se utilizó el método numérico de Newton-Raphson para determinar la profundidad crítica de sietes secciones hidráulicas (Rectangular, trapezoidal, trapezoidal asimétrico, triangular, triangular asimétrico, parabólico y circular). Con el propósito de acelerar y garantizar el nivel de convergencia para cada una de las secciones se obtuvo una función potencial para establecer el valor semilla en el proceso iterativo, este valor se asocia de manera directa a las condiciones preestablecidas del problema hidráulico. La aplicación calcula la profundidad crítica, velocidad crítica, área

Geometry topics exercises

Shane Thirkell's CV

Christopher Amalraj's Curriculum Vitae

This is the fifth project option for Calculus I during Fall 2017 at Fitchburg State. This project involves ordering types of functions by investigating their limits at infinity.

Bariz Khuda Bakhsh's résumé

Rodion Laptsuev's CV

Based on the paper Sometimes Newton's Method Cycles, we first asked ourselves if there were any Newtonian Method Cycle functions which have non-trivial guesses. We encountered a way to create functions that cycle between a set number of points with any initial, non-trivial guesses when Newton's Method is applied. We exercised these possibilities through the methods of 2-cycles, 3-cycles and 4-cycles. We then generalized these cycles into k-cycles. After generalizing Newton's Method, we found the conditions that skew the cycles into a spiral pattern which will either converge, diverge or become a near-cycle. Once we obtained all this information, we explored additional questions that rose up from our initial exploration of Newton's Method.
\begin
Discover why over 20 million people worldwide trust Overleaf with their work.
