Mathematical Rings
Forfatter:
YOGESH MALIK
Sidst opdateret:
5 år siden
Licens:
Creative Commons CC BY 4.0
Resumé:
Mathematical Rings
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
Mathematical Rings
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Consultar o ficheiro README
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[pdflatex,compress]{beamer}
\usetheme[dark,framenumber,totalframenumber]{UBI}
% Fonts, the official UBI font. O tipo de letra é o Georgia da Microsoft Office. O tipo de letra é o definido no GUIA DE NORMAS DE IDENTIDADE da UBI
\usepackage{fontspec,microtype}
\usepackage{unicode-math}
\defaultfontfeatures{Ligatures={TeX},Renderer=Basic}
\setmainfont[Ligatures={TeX,Historic}]{Georgia}
\setsansfont{Georgia}
\setmonofont{Georgia}
%%%%%%%%%%%%%%%%%%
%\usepackage{lipsum}
\title{RING}
\subtitle{\Large{Delhi Technological University \\ DELHI}}
\author{Submitted By : YOGESH MALIK }
\begin{document}
% ----------------------------------------------------------------------------
% *** Titlepage <<<
% ----------------------------------------------------------------------------
\maketitle
% ----------------------------------------------------------------------------
% *** END of Titlepage >>>
% ----------------------------------------------------------------------------
\section{My section}
\subsection{My subsection}
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\frametitle{RING}
\textcolor{blue}{
\textcolor{black}{ $\bullet$ $DEFINITION:-$}
\\ A non-empty set R , equipped with two binary operations called addition and multiplication denoted by (+) and (.) is said to form a ring if the following properties are satisfied :\textcolor{black}{\\Properties under Addition :} \\ $1$. $R$ is closed with respect to addition \\i.e., $a,$ $b$ $\in$ $R$, then $a + b$ $\in$ $R$\\ $2$. Addition is associative \\i.e., $a + (b + c) = (a + b) + c$ $\forall$ $a, b, c$ $\in$ $R$\\ $3$. Addition is commutative \\i.e., $a + b=b + a$ $\forall$ $a$, $b$ $\in$ $R$}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\vspace{2cm}
\textcolor{blue}{$4$. Existence of additive identity\\i.e., there exist an additive identity in R denoted by in R such that \\$0+a=a=a+0$ $\forall$ $a$ $\in$ $R$\\$5$. Existence of additive inverse
\\i.e., to each element $a$ in $R$, there exists an element $–a$ in $R$ such that \\ $-a + a = 0 = a + (-a)$\textcolor{black}{\\Properties under Multiplication :} \\ $6$. $R$ is closed with respect to multiplication \\ i.e., if $a, b \in$ $R$, then $a .b$ $\in$ $R$ \\ $7$. Multiplication is associative \\ i.e., $a. (b .c) = (a. b).c$ $\forall$ $a, b, c$ $\in$ $R$\\ $8$. Multiplication is distributive with respect to addition \\ i.e., $\forall$ $a, b, c$ $\in$ $R$ , $a. (b + c) = a. b + a .c$ [Left distributive law] \\ And $(b + c) . a = b. a + c. a $[Right distributive law]}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\frametitle{}
\textcolor{blue}{$\bullet$ REMARK:
\hspace{4cm}\\Any algebraic structure ($R$, $+$, $.$) is called a ring if ($R$, $+$) is an abelian group and $R$ is closed , associative with respect to multiplication and multiplication is distributive with respect to addition.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}{$\circledast$ TYPES OF RING }
\textcolor{black}{$1$. COMMUTATIVE RING :}\textcolor{blue}{ \\A ring in which $a. b = b .a$ $\forall$ $a, b$ $\in$ $R$ is called commutative ring.}\textcolor{black}{\\ 2. RING WITH UNITY :}\textcolor{blue}{\\If in a ring, there exist an element denoted by $1$ such that $1.a=a=a.1$ $\forall$ $a$ $\in$ $R$ is called a ring with unity element.\\ The element $1$ $\in$ $R$ is called the unit element of the ring. \\ Thus, if $R$ satisfies the all eight properties of ring and also have multiplicative identity, then we define $R$ as ring with identity. }
\textcolor{black}{\\$3$. NULL RING OR ZERO RING :} \textcolor{blue}{\\The set $R$ consisting of a single element $0$ with two binary operations defined by $0+0=0$ is a ring and is called null ring or zero ring.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{red}{ \vspace{2cm}\\ Eg. Prove that the set $Z$ of all integers is a ring with respect to addition and multiplication of integers.}
\textcolor{black}{\\Proof:
\\ $\centerdot$ Properties under Addition :}
\textcolor{blue}{\\$1$. Closure property: As sum of two integers is also an integer ,\\ ∴ $Z$ is closed with respect to addition of integers .
\\$2$. Associativity: As addition of integers is also an associative composition
\\ $\therefore$ , $a + (b + c) =(a + b) +c$ $\forall$ $a , b , c$ $\in$ $Z$
\\$3$. Existence of additive identity: For $0$ $\in$ $Z$, $0 + a = a = a +0$ $\forall$ a $\in$ $Z$.
\\$\therefore$, $0$ is additive identity.
\\$4$. Existence of additive inverse: For each $a$ $\in$ $Z$ there exist $–a$ $\in$ $Z$ such that $a + (-a) = 0 = (-a) + a$ ,
\\where $0$ is identity element .}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\vspace{1cm}\textcolor{blue}{$5$. Commutative property :
\\ $a + b = b+ a$ $\forall$ $a , b$ $\in$ $Z$\\ } \textcolor{black}{ $\centerdot$Properties under Multiplication:}\textcolor{blue}{\\6. Closure property with respect to multiplication: As product of two integers is also an integer\\$a . b$ $\in$ $Z$ $\forall$ $a, b$ $\in$ $Z$\\7. Multiplication is associative :\\ $a . (b .c) = (a .b) .c$ $\forall$ $a, b, c$ $\in$ $Z$ \\ 8. Multiplication is distributive with respect to addition:\\$\forall$ $a, b, c$ $\in$ $Z$, $a. (b + c) = a .b + a .c$ \\And $(b + c) .a = b .a + c .a$\\Hence,$Z$ is a ring with respect to addition and multiplication of integers.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{black}{$\blacktriangleright$ Note:}\textcolor{blue}{\\
1. As $1 .a = a .1 = a$ , $\forall$ $a$ $\in$ $Z$ ,\\ $\therefore$ $1$ is a multiplicative identity of $Z$.
\\2. As $a .b = b .a$, $\forall$ $a , b$ $\in$ $Z$,
\\ $\therefore$ multiplication of integers is commutative .
\\ Hence, $Z$ is a commutative ring with unity.}\textcolor{black}{
\\$\circledast$ $Remark:$}\textcolor{blue}{
\\ A ring $R$ is said to be Boolean ring if $x^2 = x$ $\forall$ $x \in R$.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{black}{\\ Eg. Prove that a ring $R$ in which $x^2 = x$ $\forall$ $x \in R$ , must be commutative.
\\ OR
\\ Show that a Boolean ring is commutative.
}\textcolor{blue}{\\
Proof:
\\ Let $x, y \in R$ $\Rightarrow$
$x + y \in R$
\\ By give condition, $(x + y) ^2 = x + y$ $\forall$ $x, y \in R$
\\ $\Rightarrow$ $(x + y)(x + y) = x + y $
\\ $\Rightarrow$ $x. x + x. y + y. x + y. y = x + y$
\\ $x^2 + x. y + y. x + y^2 = x + y$
\\$\Rightarrow$ $x + x. y + y. x + y = x + y$ [$\therefore$ $x^2 = x$ , $y^2 = y$ ]
\\ $\Rightarrow$ $x. y + y. x = 0$
\\$\Rightarrow$ $x. y = -(y .x)$
\\ $x.y = ( -y .x)^2$ ………(1)}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}\vspace{1cm}
\textcolor{blue}{
Again $\forall$ $y \in R$ , $(y + y) ^2 = y + y$
\\$\Rightarrow$ $(y + y)(y + y) = y + y$
\\$\Rightarrow$ $y. y + y .y + y .y + y .y = y + y$
\\ $y^2 + y^2 + y^2 + y^2 = y + y$
\\$\Rightarrow$ $y + y + y + y = y + y$
\\$\Rightarrow$ $y + y = 0$
\\$\Rightarrow$ $y = -y$ \\
$\therefore$ from (1), $x. y = (yx)^2$
\\ $x.y = yx$
\\Thus $x .y = y .x$
$\forall$ $x, y \in R$
\\Hence,$R$ must be commutative. }
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}{$\circledast$ RINGS WITH OR WITHOUT ZERO DIVISORS:}
\textcolor{blue}{\\A ring $(R, + , .)$ is said to be $without$ $zero$ $divisors$ if for all $a$, $b$ belong to R $a. b = 0$ that implies either $a = 0$ or $b = 0$ \\On the other hand, if in a ring $R$ there exists non zero elements $a$ and $b$ such that $a. b =0$, then $R$ is said to be a $ring$ $with$ $zero$ $divisors.$ \\Eg. \\1. Sets $Z$, $R$, $C$, and $Q$ are without zero divisors rings.\\2. The ring (${0, 1, 2, 3, 4, 5}$, $+$6, $×$6) is a ring with zero divisors.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}\vspace{2cm}
\textcolor{red}
{
Eg. Prove that the set $\{0,1,2,3,4,5 \}$ with addition modulo $6$ and multiplication modulo $6$ as composition is a ring with zero divisors.}
\textcolor{blue}{
Proof :
\\ Let $R$ =$\{0,1,2,3,4,5\}$}
\textcolor{black}{ \\Properties under addition :}
\textcolor{blue}{
\\1. Closure law :
\\As all the entries in the addition composition table are elements of set $R$ is closed w.r.t. addition modulo 6.
\\2. Associative law : \\The composition $+6$ is associative. If $a,b,c$ are any three elements of $R$ then
\\ $a$ +6 $(b$ +6 $c)$= $a$ +6 $(b + c)$
\\ $a$ +6 ($b$ +6 $c$)= least non-negative remainder when $a+(b+c)$ is divided by $6$}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{blue}{
\\$a +6 (b+6 c)$=least non-negative remainder when $(a+b)+c$ is divided by $6$
\\$a$ +6 ($b$ +6 $c$)=$(a+b)$ +6 $c$
\\$a$ +6 ($b$ +6 $c$)=($a$ +6 $b$) +6 $c$
\\3. Existence of identity :
\\As $0$ +6 $a$ = $a$=$a$ +6 $0$ $\forall$ $a$ $\in$ $R$
\\4. Existence of inverse :
\\From the table , we see that the inverse of $\{0,1,2,3,4,5\}$ are $\{0,5,4,3,2,1\}$ respectively. Hence , additive inverse exists.
\\5. Commutative law :
\\ For all $a,b$ $\in$ $R$ , we have $a$ +6 $b$=$b$+6 $a$}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{black}{
\\Properties under multiplication :}
\textcolor{blue}{
\\6. Closure law for multiplication : \\All the entries in the multiplication composition table are element of set $R$ , therefore $R$ is closed with respect to multiplication modulo 6.}
\textcolor{blue}{\\7. Associative law for multiplication : \\Let $a, b , c$ $\in$ $R$
\\ $\therefore$ $a$ ×6 ($b$ ×6 $c$) = $a$ ×6 $(b c)$
\\ $a$ ×6 $(b$ ×6 $c)$ = least non – negative remainder when $a(b c)$ is divided by 6.
\\ $a$ ×6 $(b$ ×6 $c)4$ = least non negative remainder when $(ab)c$ is divided by 6
\\ $a$ ×6 $(b$ ×6 $c)$ = $ab$ ×6 $c$
\\ $a$ ×6 $(b$ ×6 $c)$ = $(a$ ×6 $b)$ ×6 $c$}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\vspace{1.75cm}
\textcolor{blue}{
8. Distribution laws : \\If $a,b,c$ be any three elements of $R$ , then
\\$a$ ×6 $(b$ +6 $c)$ = $a$ ×6 $(b$ + $c$)
\\$a$ ×6 $(b$ +6 $c)$= least non negative remainder when $a(b+c)$ is divided by 6
\\$a$ ×6 $(b$ +6 $c)$ = least non – negative remainder when $ab+ac$ is divided by 6
\\$a$ ×6 $(b$ +6 $c)$ = $ab$ +6 $ac)$
\\$a$ ×6 $(b$ +6 $c)$ = $a$ ×6 $(b$ +6 $c)$}
\textcolor{blue}{
\\similarly , ($b$ +6 $c)$ ×6 $a$ = $(b$ ×6 $a)$ +6 $(c$ ×6 $a)$
\\Hence , $R$ is a ring with respect to given compositions.}
\end{frame}
\begin{frame}
\textcolor{blue}{\\As $(R$, $+$6, $×$6) is ring ,
\\Now for $2, 3$ \in R , $2× 3= 0$
\\i.e., product of two non zero element is equal to the zero element of the ring .\\
Hence , $R$ is a ring with zero divisors.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
\end{document}