Homework 4m
Forfatter:
Geoffrey Bostany
Sidst opdateret:
10 år siden
Licens:
Creative Commons CC BY 4.0
Resumé:
homework 4m
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\documentclass[11pt]{article}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{amssymb}
\pagestyle{fancy}
\lhead{Homework 4M}
\chead{Geoffrey Bostany}
\rhead{September 17, 2014}
\begin{document}
\begin{enumerate}
\item
\begin{enumerate}
\item We will disprove this by providing a counterexample \\ Let p = 13 \\ $p+2=15$ \\ $15=r*s$ where $r=3$ and $s=5$ \\ therefore, since neither $r$ nor $s$ equals 1, $p$ is prime, but $p+2$ is not prime
\item Let m and n both be even, thus m-n and m+n can be written as \\ $m-n=2k-2l=2(k-l)$ \\ $m+n=2k+2l=2(k+l)$ \\ thus, $m-n$ and $m+n$ are both even. \\ Now, let m and n both be odd, thus m-n and m+n can be written as \\ $m-n=(2k+1)-(2l+1)=2(k-l)$ \\ $m+n=(2k+1)+(2l+1)=2(k+l+1)$ \\ thus, m+n and m-n are both even. \\ now, let m be odd and n be even \\ $m-n=(2k+1)-2l=2(k-l)+1$ \\ $m+n=(2k+1)+2l=2(k+l)+1$ \\ thus m-n and m+n are both odd. This proves that for all integers m and n, m-n and m+n are either both odd or both even
\item We can disprove by providing a counter-example \\ Let $x=5.3$ and $y=4.8$ \\ $\lfloor 5.3 \rfloor - \lfloor 4.8 \rfloor = 5-4=1$ \\ $\lfloor 5.3-4.8 \rfloor = \lfloor 0.5 \rfloor = 0$ \\ thus disproving this claim
\item If we let $x$ be even, it can be written as $x=2k$ for some integer $k$ \\ then, $(2k)^2-(2k)-3$ \\ $4k^s-2k-3 = 2(2k^2-k-2)+1$ \\ so with $x$ being even, $x^2-x-3$ is odd \\ now let x be odd and written as $x=2k+1$ \\ then $(2k+1)^2-(2k+1)-3$ \\ $=4k^2+4k+1-2k+1-3 = 4k^2+2k-1 \\ =2(k^2+k-1)+1$ \\ thus when $x=2k+1$ $x^2-x-3$ is odd which proves the statement
\item let $m$ be any even natural number, we can write it as \\ $m=2k$ \\ $m^7=(2k)^7 \\ m^7=2^7*k^7$ \\ $m^7=2(2^6*k^7)$ \\ so $m^7=2l$ where $l=(2^6*m^7)$ thus proving that if $m$ is an even natural number, then $m^7$ is also even.
\end{enumerate}
\item $d|a \to d|ax$ because if d divides a, then a is a multiple of d. So for any x, ax is still a multiple of d. This logic can be applied similarly to $d|b \to d|by$ \\ then, $d|a \wedge d|b \to d|(a+b)$ because \\ $d|a \to dq=a \\ d|b \to dk=b \\ a+b=dq+dk=d(q+k)$ thus $d|(a+b)$\\ finally, $d|ax \wedge d|by \to d|(ax+by)$
\item given $x,y, z$ if $x-y$ is odd, and $y-z$ is even, then they can be written as: \\ $x-y=2k+1$ for some integer $k$ and $y-z=2l$ for some integer $l$ \\ now, we will isolate $x$ and $z$ to test the proof. \\ $x=2k+y+1$ and $z=-2l+y$ \\ then, $x-z=2k+y+1+2l-y=2(k+l)+1$ thus, $x-z=2n+1$ where $n=(k+1)$ therefore $x-z$ is odd
\item To prove that if $r$ is irrational, then $r^\frac{1}{t}$ is also irrational, we will prove the contrapositive. \\ Start by assuming that $r^\frac{1}{t}$ is rational so $r^\frac{1}{t}=z$ such that $z \in \mathbb{Q}$ \\ since $z \in \mathbb{Q}$, $z=\frac{a}{b}$ such that $b \neq 0$ and $a,b \in\mathbb{Z}$ \\ $r^\frac{1}{t}=z$ \\ $(r^\frac{1}{t})^t=z^t=r$ \\ $r=(\frac{a}{b})^t=\frac{a^t}{b^t}$ where $t>0$ \\ thus $b^t \neq 0$ and $a^t,b^t \in \mathbb{Z}$ because $a^t$ and $b^t$ are just the product of integers \\ and therefore $r$ is a rational number which proves the contrapositive
\end{enumerate}
\end{document}