Guía de matemáticas.
Forfatter:
Neilluj
Sidst opdateret:
10 år siden
Licens:
Creative Commons CC BY 4.0
Resumé:
Una guía de matemáticas básicas.
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
\documentclass[12pt]{article}%
\usepackage{amsfonts}
\usepackage{fancyhdr}
\usepackage{comment}
\usepackage[spanish]{babel}
\usepackage[a4paper, top=2.5cm, bottom=2.5cm, left=2.2cm, right=2.2cm]%
{geometry}
\usepackage{times}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb}
\usepackage{changepage}
\usepackage{amssymb}
\usepackage{graphicx}%
\setcounter{MaxMatrixCols}{30}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Z}{\mathbb{Z}}
\begin{document}
\title{Guía de matemáticas.}
\date{\today}
\author{Héctor.}
\maketitle
\section{?`Cuales son los n\'umeros naturales?}
Los n\'umeros naturales son usados para contar (por ejemplo, "hay cinco monedas en la mesa") o para imponer un orden (por ejemplo, "Esta es la tercera ciudad mas grande del pais"). En el lenguaje comun , estos dos usos de los n\'umeros naturales se distinguen por el uso de los n\'umeros cardinales o de los n\'umeros ordinales.\\
No existe ning\'un acuerdo universal acerca de cuando incluir al cero en el conjunto de los numeros naturales.Algunos autores consideran que los números naturales comienzan en 0 , es decir 0, 1, 2, 3, \dots, mientras que otros autores comienzan con el 1, consideran a los numeros naturales como el conjunto de los \textbf{enteros positivos} 1,2,3,\dots, .\\
Los numeros naturales se denotan con simbolo $\mathbb{N}$.\\
Las propiedades de los numeros naturales , tales como la \textbf{divisibilidad} y la distribuci\'on de los \textbf{numeros primos}, son estudiadas en la \textbf{teor\'ia de numeros}. Los problemas que tiene que ver con el conte\'o y el orden, tales como el partir o enumerar son estudiadas en la combinator\'ia.\\
Los n\'umeros naturales son la base de todos los dem\'as tipos de n\'umeros: los enteros, los n\'umeros racionales, los n\'umeros reales, \ldots, etc.
\section{?`Cuales son los n\'umeros enteros?}
Un entero es un n\'umero que puede ser escrito sin parte fraccionaria (por ejemplo, 21, 4, 0 y 2015 son enteros, en cambio 9.75, $5^{\frac{1}{2}}$, $\sqrt{2}$ y $\pi$ no lo son).\\
El conjunto de los enteros consiste de el cero (0), los n\'umeros naturales $(1, 2, 3, \ldots)$ y sus \textbf{inversos aditivos} (los \textbf{enteros negativos}, es decir, $-1, -2, -3, \dots$). Estos son denotados por el s\'imbolo $\Z$ que viene de el alem\'an Zahlen que significa n\'umero.
\section{?`Cuales son los n\'umeros primos y cuales son los n\'umeros compuestos?}
Un \textbf{n\'umero primo } (o un \textbf{primo}) es un \textbf{n\'umero natural} mayor que 1 que no tiene \textbf{divisores} positivos (un \textbf{divisor} de un \textbf{entero} $n$, tambi\'en llamado un \textbf{factor} de $n$, es un entero que puede ser multiplicado por otro entero para producir $n$.) distintos de 1 y el mismo. Por ejemplo, 5 es primo porque 1 y 5 son los \'unicos factores enteros positivos. Existe un n'umero infinito de primos, esto fue demostrado por \textbf{Euclides} por el año 300 BC.\\
Un n\'umero natural mayor que 1 que no es un n\'umero primo es llamado un \textbf{n\'umero compuesto}. Por ejemplo 6 es un número compuesto porque tiene como divisores a 2 y a 3 aparte de 1 y 6.
\section{?`Cuales son los n\'umeros racionales?}
Un \textbf{n\'umero racional} es cualquier n\'umero que se puede expresar como cociente o fracci\'on $\frac{p}{q}$ de dos enteros, $p$ y $q$, con denominador $q\neq 0$ distinto de cero. Como $q$ puede ser igual a 1, todo número entero es un n\'umero racional. El conjunto de todos los n\'umeros racionales es denotado por el Simbolo $\Q$.
La \textbf{expansión decimal} de un número racional siempre termina o comienza repetir la misma secuencia finita de números una y otra vez despues de un número finito de digitos. Ademas, cualquier expresión decimal que termina o se repite representa un n\'umero racional. Existen n\'umeros que no son racionales por ejemplo $\sqrt[2]{2}, \pi, \mathrm{e}$.
\section{Suma, multiplicaci\'on y divisi\'on de fracciones.}
\subsection{Suma.}
Dados dos n\'umeros expresados en forma de fraci\'on. $$\frac{a}{b}, \frac{c}{d}$$ Se define su suma como:
$$\frac{a}{b}+\frac{c}{d}=\frac{ad+cb}{bd}$$\\
\textbf{Ejemplo:}\\
Calcular la siguiente suma $$\frac{3}{5}+\frac{2}{7}=$$
En este caso $a=3, b=5, c=2, d=7$ de esta forma.
$$\frac{3}{5}+\frac{2}{7}=\frac{(3)(7)+(2)(5)}{(5)(7)}$$\\
\textbf{Ejemplo:}\\
Calcular la siguiente suma:
$$\frac{2}{3}+5=$$
En este observamos que $1=\frac{(3)}{(3)}, 5=\frac{5}{1}$, entonces
$$5=(5)(1)=(5)(\frac{3}{3})=(\frac{5}{1})(\frac{3}{3})=\frac{(5)(3)}{(1)(3)}$$
$$5=\frac{15}{3}$$
\subsection{Multiplicaci\'on.}
Dados dos n\'umeros expresados en forma de fraci\'on. $$\frac{a}{b}, \frac{c}{d}$$ Se define su multiplicaci\'on como:
$$(\frac{a}{b})(\frac{c}{d})=\frac{(a)(c)}{(b)(d)}$$\\
\textbf{Ejemplo:}\\
Calcular la siguiente multiplicaci\'on de fracciones $$(\frac{3}{5})(\frac{2}{7})=$$
En este caso $a=3, b=5, c=2, d=7$ de esta forma.
$$(\frac{3}{5})(\frac{2}{7})=\frac{(3)(2)}{(5)(7)}=\frac{6}{35}$$\\
\textbf{Ejemplo:}\\
Calcular la siguiente multiplicación:
$$(\frac{2}{3})(5)=$$
En este observamos que $1=\frac{(3)}{(3)}, 5=\frac{5}{1}$, entonces
$$5=(5)(1)=(5)(\frac{3}{3})=(\frac{5}{1})(\frac{3}{3})=\frac{(5)(3)}{(1)(3)}=\frac{15}{3}$$
entonces
$$(\frac{2}{3})(5)=(\frac{2}{3})(\frac{15}{3})=\frac{(2)(15)}{(3)(3)}=\frac{30}{9}=\frac{10}{3}$$
\subsection{Divisi\'on.}
Dados dos n\'umeros expresados en forma de fraci\'on. $$\frac{a}{b}, \frac{c}{d}$$ Se define su división\'on como:
$$\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{(a)(d)}{(b)(c)}$$\\
\textbf{Ejemplo:}\\
Calcular la siguiente divisi\'on de fracciones $$\frac{\frac{3}{5}}{\frac{2}{7}}=$$
En este caso $a=3, b=5, c=2, d=7$ de esta forma.
$$\frac{\frac{3}{5}}{\frac{2}{7}}=\frac{(3)(7)}{(5)(2)}=\frac{21}{10}$$\\
\textbf{Ejemplo:}\\
Calcular la siguiente divisi\'on:
$$(\frac{2}{3})\div(5)=$$
En este observamos que $1=\frac{(3)}{(3)}, 5=\frac{5}{1}$, entonces
$$5=(5)(1)=(5)(\frac{3}{3})=(\frac{5}{1})(\frac{3}{3})=\frac{(5)(3)}{(1)(3)}=\frac{15}{3}$$
entonces
$$(\frac{2}{3})\div(5)=(\frac{2}{3})\div(\frac{15}{3})=\frac{(2)(3)}{(3)(15)}=\frac{6}{45}=\frac{2}{15}$$
\section{?`Que es un polinomio?}
Un \textbf{polinomio} es una expresi\'on que consiste de \textbf{incognitas (indeterminadas)} y de \textbf{coeficientes}, que involucran solo las operciones de suma, resta, multiplicación y exponentes enteros no negativos. Un ejemplo de un polinomio de una sola incognita (o indeterminada), $x$, es $x^2-4x+7$.
\section{?`Que es un monomio?}
De forma muy general un \textbf{monomio} es un polinomio con un solo termino, por ejemplo. Si solo se considera una variable $x$, esto significa que un monomio sera 1 o una potencia $x^n$ multiplicada por algún n\'umero. por ejemplo $3x^2$.
\section{Suma, resta y multiplicación de monomios}
\subsection{Suma de monomios.}
Sólo se pueden sumar o restar los monomios semejantes.
El resultado se obtiene sumando o restando sus coeficientes.\\
\textbf{Ejemplo:}
$$5x^2 y^3 + 8x^2 y^3 - 3x^2 y^3 = 10x^2 y^3 $$
Si los monomios no son semejantes, el resultado de la suma o resta es un polinomio.
\subsection{Producto de monomios.}
Dos monomios se pueden multiplicar, efectuando el producto de los coeficientes y de las partes literales, respectivamente.
\textbf{Ejemplos:}
$$(6x^3) \cdot (-4x^3) = -24x^6$$
$$\left( 4x^2 \right) \cdot \left( 8x^3y \right) = 32x^5y$$
$$\left( 5a^2b^3 \right) \cdot \left( -3ab \right) \cdot \left( 4b^2 \right) = -60a^3b^6$$
$$\left( \frac{3}{4}x^2y^3 \right) \cdot \left( \frac{2}{3}xy \right) \cdot \left( \frac{30}{48}x^5 \right) = \frac{5}{16}x^8y^4$$
\subsection{Cociente de dos monomios}
El cociente de dos monomios será otro monomio sólo cuando la parte literal del dividendo es múltiplo de la parte literal del divisor.\\
\textbf{Ejemplos:}
$$\frac{7x^2y}{2xy}= \frac{7}{2} x$$
sí es un monomio porque: $x^2 y$, es múltiplo de $xy$;
$$\frac{7x^2y}{2xyz} = \frac{7x}{2z} = \frac{7}{2} \; \frac{x}{z} = \frac{7}{2} x z^{-1}$$
\section{Suma, resta y multiplicación de polinomios}
Los polinomios se pueden sumar y restar agrupando los términos y simplificando los monomios semejantes.\\
\textbf{Ejemplo:}\\
Sean los polinomios: $P(x) = (2x_{}^2+4x+1)$ y $Q(x)_{}^{} = (5x^2+3)$, entonces la suma de $P(x)$ y $Q(x)$ es:
$$P(x)-Q(x)=2x^2+5x^2+4x+1+3$$\\
Para multiplicar polinomios se multiplica cada término de un polinomio por cada uno de los términos del otro polinomio y luego se simplifican los monomios semejantes.\\
\textbf{Ejemplo:}\\
Sean los polinomios: $P(x) = (2x_{}^3+4x+1)$ y $Q(x)_{}^{} = (5x^2+3)$, entonces su producto es:
$$P(x)Q(x)_{}^{} = (2x_{}^3+4x+1)(5x^2+3) = (2x_{}^3+4x+1)(5x^2) + (2x^3+4x+1)(3)= (10x_{}^5 + 20x^3 + 5x^2) + (6x^3+12x+3)= 10x_{}^5 + 26x^3 + 5x^2 + 12x + 3$$
\section{Operaciones con los exponentes.}
\subsection{Propiedades b\'asicas}
Si $a$ es un número positivo y $b,c$ son enteros, entonces se tienen las siguientes identitades:
\begin{enumerate}
\item $a^{b^c}=(a^b)^c=a^{bc}$
\textbf{Ejemplo:}
$3^{4^2}=(3^4)^2=3^{(4)(2)}=3^8==6561$
\item Sean $a,b$ números no negativos y $c,d$ numeros enteros, entonces$$ \frac{a^c}{b^d}=(a^c)(b^{-d})$$\\
\textbf{Ejemplo:}\\
$$\frac{x^4}{x^3}=(x^4)(x^{-3})=x^{4-3}=x$$
\end{enumerate}
\end{document}