Geometría Analítica
Forfatter:
CARLOS RODRÍGUEZ JASO
Sidst opdateret:
7 år siden
Licens:
Creative Commons CC BY 4.0
Resumé:
Geometría Analítica
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
Geometría Analítica
\begin
Opdag hvorfor 18 millioner mennesker verden rundt stoler på Overleaf med deres arbejde.
% Template created by Karol Kozioł (www.karol-koziol.net) for ShareLaTeX
\documentclass[a4paper,spanish,9pt]{extarticle}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{verbatim}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{pgf,tikz}
\usepackage{mathrsfs}
\usetikzlibrary{shapes, calc, shapes, arrows, babel}
\usepackage{amsmath,amssymb,textcomp}
\everymath{\displaystyle}
\usepackage{times}
\renewcommand\familydefault{\sfdefault}
\usepackage{tgheros}
\usepackage[defaultmono,scale=0.85]{droidmono}
\usepackage{multicol}
\setlength{\columnseprule}{0pt}
\setlength{\columnsep}{20.0pt}
\usepackage[utf8]{inputenc}
\usepackage[spanish]{babel}
\usepackage{eurosym}
\usepackage{graphicx}
\graphicspath{{./img/}}
\usepackage{svg}
\usepackage{hyperref}
\usepackage{geometry}
\geometry{
a4paper,
total={210mm,297mm},
left=10mm,right=10mm,top=10mm,bottom=15mm}
\linespread{1.3}
\newcommand{\samedir}{\mathbin{\!/\mkern-5mu/\!}}
% custom title
\makeatletter
\renewcommand*{\maketitle}{%
\noindent
\begin{minipage}{0.6\textwidth}
\begin{tikzpicture}
\node[rectangle,rounded corners=6pt,inner sep=10pt,fill=blue!50!black,text width= 0.95\textwidth] {\color{white}\Huge \@title};
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.35\textwidth}
\begin{tikzpicture}
\node[rectangle,rounded corners=3pt,inner sep=10pt,draw=blue!50!black,text width= 0.95\textwidth] {\begin{tabular}{cc} \multirow{2}{1cm}{\includegraphics[width=0.15\columnwidth]{header_right}}& \@author \\ & \ies \end{tabular}};
\end{tikzpicture}
\end{minipage}
\bigskip\bigskip
}%
\makeatother
% custom section
\usepackage[explicit]{titlesec}
\newcommand*\sectionlabel{}
\titleformat{\section}
{\gdef\sectionlabel{}
\normalfont\sffamily\Large\bfseries\scshape}
{\gdef\sectionlabel{\thesection\ }}{0pt}
{
\noindent
\begin{tikzpicture}
\node[rectangle,rounded corners=3pt,inner sep=4pt,fill=blue!50!black,text width= 0.95\columnwidth] {\color{white}\sectionlabel#1};
\end{tikzpicture}
}
\titlespacing*{\section}{0pt}{15pt}{10pt}
% custom footer
\usepackage{fancyhdr}
\makeatletter
\pagestyle{fancy}
\fancyhead{}
\fancyfoot[C]{\footnotesize \@author \ - \ies}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\makeatother
\usepackage{multirow} % para las tablas
\title{Geometría Analítica}
\author{Departamento de Matemáticas}
\date{2014}
\newcommand{\ies}{IES Pedro Cerrada}
\begin{document}
\maketitle
\begin{multicols*}{2}
\section{Vectores Libres}
Dados dos puntos en el plano (A y B, podemos trazar una flecha que vaya del primero al segundo. A esta flecha la llamaremos vector (fijo) y se denota $\overrightarrow{AB}$ o $\overrightarrow{v}$.
\begin{tikzpicture}[scale=0.75]
\coordinate (A) at (1,2);
\coordinate (B) at (6,4);
\draw [fill=blue] (A) circle (2pt) node [left] {A};
\draw [fill=blue] (B) circle (2pt) node [left] {B};
\draw [->, red, thick] (A) -- node[below] {$\overrightarrow{AB}$} (B);
\end{tikzpicture}
\begin{itemize}
\item \textbf{Módulo}: La longitud del vector
\item \textbf{Dirección}: La recta que contiene al vector y cualquiera de sus paralelas
\item \textbf{Sentido}: El que va del origen al final o su contrario. Viene representado por punta "la cabeza de la flecha"
\end{itemize}
Dos vectores (fijos) son \textbf{equipolentes} cuando tienen el mismo módulo, misma dirección y mismo sentido. Un vector fijo y todos sus equipolentes forman lo que de denomina un \textbf{vector libre}. Un vector libre viene determinado por sus coordenadas:
\section{Coordenadas y módulo de un vector} Un vector se puede ver como el desplazamiento que tenemos que hacer horizontalmente y verticalmente para ir del origen al extremo del mismo. Al desplazamiento horizontal le llamaremos primera coordenada y al vertical, segunda.
\begin{itemize}
\item Dados $A(x_1,y_2),B(x_2,y_2) \to \overrightarrow{AB}(x_2-x_1,y_2-y_1)$
\item A partir de las coordenadas del punto podremos calcular su módulo. Dados $\overrightarrow{u}(x,y), \to \left|\overrightarrow{u}\right|=\sqrt{x^2+y^2}$
\end{itemize}
\subsection{Ejemplo}
Determina las coordenadas y el módulo del vector libre cuyo representante es el vector que va de $A(1,1)$ a $B(7,5)$
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm, scale=0.8]
\draw [color=lightgray,dash pattern=on 1pt off 1pt, xstep=1cm,ystep=1cm] (-0.6129302567150502,-0.43158220601634095) grid (9.010648940148005,6.1);
\draw[->,color=black] (-0.6129302567150502,0) -- (9.010648940148005,0);
\foreach \x in {,1,2,3,4,5,6,7,8,9}
\draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0,-0.43158220601634095) -- (0,6.1);
\foreach \y in {,1,2,3,4,5,6}
\draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\footnotesize $\y$};
\draw[color=black] (0pt,-10pt) node[right] {\footnotesize $0$};
\clip(-0.6129302567150502,-0.43158220601634095) rectangle (9.010648940148005,7.8783927087822985);
\draw [->,line width=1.5pt,color=red] (1,1) -- node[above,fill=white]{$\overrightarrow{v}=\left(6,4 \right) \land \left|\overrightarrow{v}\right|=\sqrt{6^2+4^2}=\sqrt{52}$} (7,5);
\draw [-,line width=2pt,color=blue] (1,1) -- node[below]{$7-1=6$} (7,1);
\draw [-,line width=2pt,color=orange] (7,1) -- node[right]{$5-1=4$}(7,5);
\draw [fill=yellow, color=blue] (1,1) circle (2pt) node[above] {$A = (1, 1)$};
\draw [fill=yellow, color=blue] (7,5) circle (2pt) node[above] {$B = (7, 5)$};
\end{tikzpicture}
\section{Operaciones con vectores}
\subsection{Producto de un número por un vector}
\paragraph*{Definición}
Dado $k \in \mathbb{R}$ y $\overrightarrow{u}$ se define $k\cdot\overrightarrow{u}$ como un $\overrightarrow{v}$ que:\begin{itemize}
\item $\left|\overrightarrow{v}\right|=\left|k\right|\cdot\left|\overrightarrow{u}\right|$
\item $ \overrightarrow{v}\samedir\overrightarrow{u}$
\item Mismo sentido que $\overrightarrow{u}$ si $k>0$ o sentido contrario si $k>0$
\end{itemize}Además se cumple que si $\overrightarrow{u}(x_1,y_1)\to k\overrightarrow{u}(k\cdot x_1,k\cdot y_1)$
\subsubsection{Ejemplos}\begin{tikzpicture}[scale=0.75]
\draw [->, red, thick, fill=red] (1,1) -- node[left] {$\overrightarrow{u}(1,2)$} (2,3);
\draw [->, blue, thick, fill=blue] (2,-1) -- node[left] {$2\overrightarrow{u}(2,4)$} (4,3);
\draw [->, gray, thick, fill=blue] (6,1) -- node[left] {$\frac{1}{2}\overrightarrow{u}(0.5,1)$} (6.5,2);
\draw [->, orange, thick, fill=blue] (8,3) -- node[right] {$-\frac{3}{2}\overrightarrow{u}(1.5,3)$} (6.5,0);
\end{tikzpicture}
\subsection{Suma y resta de vectores}
\paragraph*{Definición} Dados $\overrightarrow{u}$ y $\overrightarrow{v}$ se define la suma como el vector que si los ponemos seguidos va del origen del primer vector al extremo del segundo vector.
\begin{tikzpicture}[scale=0.75]
\draw [->, red, thick, fill=red] (1,0) -- node[left] {$\overrightarrow{u}(1,2)$} (2,2);
\draw [->, blue, thick, fill=blue] (2,2) -- node[left] {$\overrightarrow{v}(4,1)$} (6,3);
\draw [->, orange, thick, fill=blue] (1,0) -- node[right] {$\overrightarrow{u}+\overrightarrow{v}(5,3)$} (6,3);
\end{tikzpicture}
\end{multicols*}
\end{document}