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Pulse propagation through optical fibers is studied for two different phenom-

ena: (i) the evolution of four-wave-mixing and (ii) the interplay between self- and

cross-phase modulation for ultra-short pulses in a polarization maintaining fiber.

For the four-wave-mixing case, we present the results of a study of the dynam-

ical evolution of multiple four-wave-mixing processes in a single-mode optical fiber

with spatially and temporally δ-correlated phase noise. A nonlinear Schrödinger

equation (NLSE) with stochastic phase fluctuations along the length of the fiber

is solved using the Split-Step Fourier method. Good agreement is obtained with

previous experimental and computational results based on a truncated-ODE model

in which stochasticity was seen to play a key role in determining the nature of

the dynamics. The full NLSE allows for simulations with high frequency resolu-

tion (60 MHz) and frequency span (16 THz) compared to the truncated ODE model

(300 GHz and 2.8 THz, respectively), thus enabling a more detailed comparison with

observations. Fluctuations in the refractive index of the fiber core are found to be



a possible source for this phase noise. It is found that index fluctuations as small

as 1 part per billion are sufficient to explain observed features of the evolution of

the four-wave-mixing sidebands. These measurements and numerical models thus

may provide a technique for estimating these refractive index fluctuations which are

otherwise difficult to measure.

For the case of self- and cross-phase modulation, the evolution of orthogo-

nal polarizations of asymmetric femtosecond pulses (810 nm) propagating through a

birefringent single-mode optical fiber (6.9 cm) is studied both experimentally (using

GRENOUILLE) and numerically (using a set of coupled NLSEs). A linear optical

spectrogram representation is derived from the electric field of the pulses and jux-

taposed with the optical spectrum and optical time-trace. The simulations are in

good qualitative agreement with the experiments. Input temporal pulse asymmetry

is found to be the dominant cause of output spectral asymmetry. The results indi-

cate that it is possible to modulate short pulses both temporally and spectrally by

passage through polarization maintaining optical fibers with specified orientation

and length.
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Chapter 1

Introduction

1.1 Source of Nonlinearity in an Optical Fiber

The response of any dielectric to light becomes nonlinear for intense electro-

magnetic fields. Standard optical fibers are made of fused silica which is a dielectric.

The total polarization P is nonlinear in the electric field E and is given by [1-5] -

P = ε0
(
χ(1) : E + χ(2) : EE + χ(3) : EEE + . . .

)
, (1.1)

where ε0 is the permittivity of free-space, and χ(j) is the j -th order susceptibility of

the dielectric. The linear susceptibility χ(1) represents the dominant contribution

to P and its effects are included through the refractive index n(ω) and the attenua-

tion coefficient α(ω). χ(2) is responsible for nonlinear effects such as sum-frequency

generation and second harmonic generation [1, 3]. Fused silica does not manifest

these effects as it is centro-symmetric [6]. Hence, the dominant nonlinear contribu-

tion to P is due to χ(3) which results in effects such as third harmonic generation,

four-wave-mixing, self- and cross-phase modulation. The cubic nonlinearity results

in an intensity dependent refractive index

122 23333

1114 14444
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ñ(ω, |E|2) = n(ω) + n2|E|2, (1.2)

where n(ω) is the linear part given by the Sellmier equation which takes into account

the resonance frequencies (ωj) of fused silica [1, 7],

n2(ω) = 1 +
m∑
j=1

Bjω
2
j

ω2
j − ω2

(1.3)

and n2 is given by

n2 =
3

8n
Re(χ3

xxxx) (1.4)

for an optical wave assumed to be linearly polarized along one of the axes of a

polarization maintaining fiber. The tensorial nature of χ(3) needs to be considered

for the case in which the light is not polarized along one of the fiber axes.1

The experimentally measured value of n2 for fused silica ranges from 2.2−3.4×

10−20 m2/W, which is small compared to most other nonlinear media by at least 2

orders of magnitude [1]. Despite this, nonlinear effects are easily observed for silica

fibers for relatively low input power levels due to the fact that the effective fiber

core areas are small and the fiber losses are low. Single mode fibers (those which

propagate a single transverse mode of light for a given wavelength) have effective

fiber core diameters of the order of 5µm thus causing the light intensities within the

fiber to be large despite the smallness of the input power. The low loss in the fiber

(<10 dB/km) allows one to use long fibers to observe nonlinear phenomena.

1This is my footnote. I started playing the piano when I was eight years old. This is my

footnote. I started playing the piano when I was eight years old. This is my footnote. I started

playing the piano when I was eight years old. This is my footnote. I started playing the piano

when I was eight years old.
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1.2 Physics of Pulse Propagation

Mathematically speaking, in the classical limit, pulse propagation in an optical

fiber is governed by Maxwell’s equations [8, 9],

~∇× ~E = −∂
~B

∂t

~∇× ~H = ~J +
∂ ~D

∂t

~∇ · ~D = ρf

~∇ · ~B = 0, (1.5)

where ~E and ~H are electric and magnetic field vectors, and ~D and ~B are electric

and magnetic flux densities, respectively. ~J is the current density and ρf is the free

charge density.

Under the following assumptions [8] -

(a) there are no free charges ( ~J = ρf = 0), a good approximation for an optical

fiber,

(b) the medium is non-magnetic ( ~M = 0), which an optical fiber is,

(c) the wavelength of light propagated is away from any material resonances (0.5

- 2 µm), the results described in this thesis lie in this wavelength range, i.e.,

the results presented in Chap. 2 and Chap. 3 lie in the 600-700 nm regime and

the results presented in Chap. 4 lie in the 800 nm regime,

(d) the electric-dipole approximation is valid, due to which the second-order para-

metric processes such as three-wave-mixing and second harmonic generation

3



can be neglected (in practice they do occur because of quadrupole and magnetic-

dipole effects but with a very low efficiency),

(e) the medium only responds locally, which is a valid approximation for the

projects considered herein,

(f) the nonlinear polarization ~PNL can be taken as a perturbation to the total

induced polarization ~P , which is justified as the nonlinear effects are relatively

weak for the results presented in this thesis,

(g) only 3rd order nonlinear effects need to be taken into account, which is valid

up to 5th order in E since the 2nd and 4th order effects are absent due to the

centrosymmetric nature of the disordered liquidlike state of fused silica,

(h) the imaginary part of the dielectric constant ε(ω) is small compared to the

real part (low loss, which is a good approximation for the wavelength regimes

and fiber lengths considered here),

(i) the wavelength of light is higher than the cutoff wavelength of the fiber so

that the single transverse mode condition is satisfied (or else there would be

multimode propagation and nonuniform modal dispersion would have to be

taken into account),

(j) the optical fiber is polarization maintaining and the light pulse is traveling

along one of the 2 principal axes of the fiber, a very good approximation for the

results of Chap. 2, and Chap. 3, in the case of Chap. 4, this approximation is

4



relaxed as the incident light travels along both axes of the fiber, thus requiring

a set of two coupled NLSEs for simulation, one for each axis,

(k) the slowly varying envelope approximation is valid, i.e., ∆ω/ω0 � 1 where

∆ω is the spectral width of the pulse spectrum which is centered at ω0, this

approximation is valid for the studies considered in Chap. 2 and Chap. 4, in

Chap. 3, the Raman Stokes wave is considered as a separate slowly varying

envelope from the pump wave, as the two taken together would not satisfy

this condition,

(l) the nonlinear response of the medium is instantaneous, an approximation valid

for pulse widths greater than ∼70 fs, which amounts to neglecting the contri-

bution of molecular vibrations to χ(3) (the Raman effect), which have been

included in the study presented in Chap. 4 since the pulse width was ∼ 140 fs.

The propagation of the slowly varying envelope A(z,t) of a light pulse along an

optical fiber is governed by the nonlinear partial differential equation [8] -

∂A

∂z
+ β1

∂A

∂t
+
iβ2

2

∂2A

∂t2
= iγ|A|2A, (1.6)

where vg = 1/β1 is the group velocity of the pulse, β2 is the group velocity dispersion

coefficient, and γ is the nonlinearity coefficient given by

γ =
n2ω0

cAeff
. (1.7)

Here ω0 is the central angular frequency of the pulse and Aeff , the effective

core area of the fiber.
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Under transformation to a frame of reference moving at the group velocity of

the pulse, the above equation takes the form of the so-called ‘nonlinear Schrödinger

equation’ (NLSE), i.e.,

∂A

∂z
+
iβ2

2

∂2A

∂τ 2
= iγ|A|2A, (1.8)

where

τ = t− z

vg
(1.9)

is time measured in a frame of reference moving at the group velocity vg of the

pulse.

1.3 Numerical Pulse Propagation

The NLSE, like most nonlinear partial differential equations, is not amenable

to analytical solution except in certain special cases where the inverse scattering

transform can be used [10]. Thus a numerical approach is necessary for under-

standing the physics of phenomena governed by the NLSE. The numerical methods

available can be classified as finite-difference techniques and pseudo-spectral tech-

niques. Usually pseudo-spectral methods are an order of magnitude faster, the most

popular method being the Split-Step Fourier Method (SSFM) [8, 11, 12]. The speed

of the SSFM can be partly attributed to the use of the finite fast-Fourier transform

(FFT) algorithm [13].For an algorithmic description of the SSFM the reader is re-

ferred to Chap. 2, Sec. 2. Therein is also described an unconditionally stable scheme

for including linear multiplicative noise into the SSFM without disturbing the con-

servative properties of the NLSE. In the projects described in Chap. 3, simulations

6



were carried out using a combination of the SSFM and finite difference schemes.

The SSFM is also used to arrive at the simulated results described in Chap. 4.

1.4 Experimental Pulse Diagnostics

With the advent of frequency resolved optical gating (FROG) [14, 15, 16], it

has become possible to not only measure the optical spectrum and optical time trace

of a light pulse but to measure the full electric field envelope (intensity and phase) of

the light pulse. The two fields of nonlinear fiber optics and frequency resolved optical

gating (FROG) are yet to undergo cross pollination to their fullest potential since

the inception of FROG 10 years ago. This novel experimental technique adds new

dimensions to pulse measurement techniques, one of which is the ability to measure

how asymmetric a pulse is, i.e., measure its skewness, kurtosis and all higher order

moments. Asymmetric pulse propagation is a subject of interest in Chap. 4, where

a highly simplified version of FROG [17] is used to measure pulse characteristics

before and after a fiber.

1.5 Group Velocity Dispersion

Group velocity dispersion [18] (GVD) involves the temporal broadening of

a pulse as it propagates through an optical fiber. From the NLSE (Eq. 1.6) one

can derive length scales relevant to linear dispersion (LD=T2
0/β2) and nonlinearity

(LNL=1/γP0). Here T0 is the pulse width and P0 is the peak power of the pulse.

The regime in which the effects of GVD dominate and the effects of nonlinearity are

7



negligible is given by -

LD
LNL

=
γP0T

2
0

|β2|
� 1. (1.10)

In this regime, optical pulses propagate as they undergo symmetric temporal

broadening and linear chirping without any spectral broadening. The sign of the

GVD parameter β2 determines the sign of the induced chirp. If the input pulse is

chirped, then it may undergo some initial pulse compression followed by temporal

broadening. Unlike the second-order dispersion associated with GVD, third-order

dispersion causes asymmetric temporal broadening with leading and trailing edges.

It becomes important, when the operating wavelength is near the zero dispersion

wavelength of the fiber (the wavelength at which β2=0). GVD starts to limit optical

fiber communication systems when consecutive pulses broaden so much that they

start to overlap.

1.6 Self-Phase Modulation

Self-phase modulation [19] (SPM) is a phenomenon that leads to spectral

broadening and modulation of optical pulses. In the absence of GVD, SPM in-

duced spectral broadening occurs without change in the temporal pulse shape. The

spectral broadening occurs as a consequence of an intensity dependent phase-shift.

The project described in Chap. 2 has the property that LNL < L � LD, i.e., the

nonlinear term representing SPM dominates. In the regime where both SPM and

GVD are non-negligible (as in Chap. 4), phenomena qualitatively different from

those described in this section and the previous section can occur. Both temporal
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and spectral broadening can occur simultaneously. In the regime of femtosecond

pulse propagation (as in Chap. 4), GVD, third-order dispersion, intrapulse Raman

scattering (discussed in Chap. 2) and higher order nonlinear effects have to be taken

into account. If the input pulse is asymmetric, then SPM effects dominate over

all other effects, as is observed in Chap. 3. In some cases SPM can lead to pulse

compression, and in the anomalous dispersion regime (β2 < 0), the balance between

GVD and SPM can lead to soliton formation.

1.7 Four-wave-mixing

Four-wave-mixing (FWM) [20] is a parametric process involving the interaction

between four photons at different frequencies. Two different kinds of four-wave-

mixing processes are possible -

ω4 = ω1 + ω2 + ω3 (1.11)

ω3 + ω4 = ω1 + ω2. (1.12)

The former process results in third harmonic generation for the special case

when ω1 = ω2 = ω3. Both processes require phase matching to occur, in order to be

efficient. For the latter case, with the partial degeneracy of ω1 = ω2, it is relatively

easy to satisfy the phase matching condition of

∆k = k3 + k4 − k1 − k2 = 0. (1.13)

This process is of great interest to nonlinear dynamicists as the evolution of

the FWM process could constitute a route to chaos further down-stream in the fiber.
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It is also of great interest to people working in the field of optical communication

systems, as it can cause cross-talk between neighboring channels in a wavelength

division multiplexing scheme of communication.

1.8 Cross-Phase Modulation

Cross-phase modulation (XPM) [21] occurs in optical fibers when two or more

optical pulses having different central wavelengths propagate simultaneously inside

a fiber, interacting through the fiber nonlinearity which couples the two pulses non-

linearly. The evolution of the two pulses depends on the group velocity mismatch

between them by virtue of their being centered at different wavelengths, although

this is a linear phenomenon. The group velocity mismatch also exists between light

pulses traveling along orthogonal polarization axes of a fiber, and centered around

identical wavelengths, since the slow axis and fast axis of the fiber have different

group velocities. In this case, too, the two polarizations interact nonlinearly [22]

through degenerate XPM (degenerate since the central wavelengths are the same).

In the case of degenerate XPM the 2nd order and higher dispersion parameters, and

the nonlinear parameters (all of which depend only on the wavelength), are also

the same unlike in general XPM. The effects of XPM are more pronounced when

one of the pulses (the pump) has much higher power than the other (the probe).

Otherwise, the effects of self-phase modulation (SPM) tend to dominate.
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1.9 Stimulated Inelastic Scattering

Other nonlinear effects (apart from those due to the cubic χ(3) nonlinearity)

arise due to the interaction between the light traveling in the fiber and the fiber

medium. Interactions between the light field and the vibrational levels of the fiber

medium lead to stimulated Brillouin scattering (SBS) and stimulated Raman scat-

tering (SRS). SRS and SBS were among the first nonlinear effects studied in optical

fibers [23, 24, 25]. In a simple quantum mechanical picture [1] applicable to both

SRS and SBS, a photon of the incident field (called the pump) is annihilated to create

a photon at a lower frequency (belonging to the Stoke’s wave) and a phonon to con-

serve energy and momentum. SBS involves an acoustic phonon whereas SRS involves

an optical phonon, thus they have qualitatively different dispersion relations. SBS

has a much lower threshold power and manifest itself through a backward propagat-

ing wave in contrast to SRS which can involve both forward and backward traveling

waves. SBS has a maximum gain at a frequency 10 GHz [26] (down-shifted with re-

spect to the pump) and requires a very narrow bandwidth pump to manifest itself.

SRS, in contrast, has a maximum gain at a frequency 13 THz [27] downshifted with

respect to the pump. For pulse-bandwidths larger than 13 THz, the phenomenon of

Intrapulse Raman Scattering (IRS) manifests itself, involving a self-frequency shift

within the pulse from higher frequency components to lower frequency components.

Thus, SRS becomes more important for shorter pulses (larger bandwidth) unlike

SBS which nearly ceases to occur for pulses shorter than 10 ns. In both SRS and

SBS, the optical fiber plays an active role in the nonlinear process, unlike the case of
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cross- and self-phase modulation, four-wave-mixing and third harmonic generation,

where the fiber plays a passive role by mediating the interaction between several

optical waves.

1.10 Outline of Thesis

In Chap. 2, we present the results of a computational study of the influence of

stochasticity on the dynamical evolution of multiple four-wave-mixing processes in

a single mode optical fiber with spatially and temporally δ-correlated phase noise.

A generalized nonlinear Schrödinger equation (NLSE) with stochastic phase fluc-

tuations along the length of the fiber is solved using the Split-step Fourier method

(SSFM). Good agreement is obtained with previous experimental and computational

results based on a truncated-ODE (Ordinary Differential Equation) model in which

stochasticity was seen to play a key role in determining the nature of the dynam-

ics. The full NLSE allows for simulations with high frequency resolution (60 MHz)

and frequency span (16 THz) compared to the truncated ODE model (300 GHz and

2.8 THz, respectively), thus enabling a more detailed comparison with observations.

A physical basis for this hitherto phenomenological phase noise is discussed and

quantified.

In Chap. 3, we discuss the implications of spontaneous and stimulated Raman

scattering on the project discussed in Chap. 2, namely, the dynamical evolution of

stochastic four-wave-mixing processes in an optical fiber. The following question

is asked - can stimulated Raman scattering be a mechanism by which adequate
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multiplicative stochastic phase fluctuations are introduced in the electric field of

light undergoing four-wave-mixing as? Adequately checked numerical algorithms of

stimulated Raman scattering (SRS), spontaneous Raman generation and intrapulse

Raman scattering (IRS) are used while exploring this issue. The algorithms are

described in detail, as also are the results of the simulations. It is found that a 50-

meter length of fiber (as used in the experiments), is too short to see the influence

of Raman scattering, which is found to eventually dominate for longer fiber lengths.

In Chap. 4, self- and cross-phase modulation (XPM) of femtosecond pulses

(∼ 810 nm) propagating through a birefringent single-mode optical fiber (∼ 6.9

cm) is studied both experimentally (using GRENOUILLE - Grating Eliminated No

Nonsense Observation of Ultrafast Laser Light Electric Fields) and numerically (by

solving a set of coupled nonlinear Schrödinger equations or CNLSEs). An optical

spectrogram representation is derived from the electric field of the pulses and is

linearly juxtaposed with the corresponding optical spectrum and optical time-trace.

The effects of intrapulse Raman scattering (IRS) are discussed and the question

whether it can be a cause of asymmetric tranfer of pulse energies towards longer

wavelengths is explored. The simulations are shown to be in good qualitative agree-

ment with the experiments. Measured input pulse asymmetry, when incorporated

into the simulations, is found to be the dominant cause of output spectral asym-

metry. 2 The results indicate that it is possible to modulate short pulses both

temporally and spectrally by passage through polarization maintaining optical fibers

2These averages are reported for 45 ‘detailed occupational codes’, which is an intermediate
occupational classification (between two and three-digit codes) given by the Current Population
Survey (CPS).
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with specified orientation and length. The modulation technique is very direct and

straightforward. No frequency components of the broadband pulse have to be re-

jected as the entire spectrum is uniformly modulated. The technique is flexible as

the modulation spacing can be varied by varying the fiber length.

Chapter 5 provides the conclusion to the thesis.

1.11 Theorems

Theorem 1.1 This is my first theorem.

1.12 Axioms

Axiom 1.1 This is my first axiom.

Axiom 1.2 This is my second axiom in chapter 1.

1.13 Tables

This is my table.

Table 1.1: Overview of test cases used in this study.

Test Quality Setpoint Manipulated
case variable (QV) for QV variables (MVs)

TE G/H ratio 1.226 D-feed SP and Reactor Level SP
AZ xB(H2O) Reflux flow and 5th Tray temperature SP

My table is shown above. Normally it is double-spaced but I have inserted a
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command (marked in blue) to make it single-spaced and then inserted a command

(again in blue) to change the text back to double-spacing.

1.13.1 Adding Extra Space between Text and Horizontal Lines

Table 1.2: Table with Extra Space between the Text and Horizontal Lines.

Test
case

Quality vari-
able QV)

Setpoint for QV Manipulated variables (MVs)

TE G/H ratio 1.226 D-feed SP and Reactor Level SP

AZ xB(H2O) Reflux flow and 5th Tray tem-
perature SP

The line

\usepackage{tabls}

must be inserted in the preamble of your document. The table is set up to be

single-spaced by

\renewcommand{\baselinestretch}{1} \small\normalsize

before

\begin{table}
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. I set the first, second, and fourth columns as paragraphs, .5in, 1in, and 2.25in wide,

respectively. I then adjusted the separation between the words and the horizontal

lines to 5ex by also adding

\setlength{\tablinesep}{5ex}

before the

\begin{table}

command.

After typing the table I change the document to be double-spaced from this

point on.
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1.14 Figures

The figure on the following page is centered and the figure caption is indented

and single-spaced. Make sure you copy the last two lines

\renewcommand{\baselinestretch}{2}\\

\small\normalsize

to return to double-spacing of your text.

The first figure is Fig.1.1. Please note that the figure label should be placed

inside the figure caption.
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Figure 1.1: This figure caption is indented and single-spaced. Compar-
ison between the experimental measurements [28] (black), the random
initial condition NLSE model excluding phase noise (dashed curves) and
the stochastic phase noise NLSE model (solid curves) showing the first-
and second-order sideband evolution as a function of fiber length for
P0 = 5.5 W, Ω = 366 GHz, ∆ν = 0.5 GHz, γ = 0.019 W−1m−1, and
β(2) = 55 ps2/km: dynamical evolution of the: (a) power in the first-
order blue-shifted sideband, (b) power in the first-order red-shifted side-
band, (c) fluctuations in the first-order blue-shifted sideband, (d) fluc-
tuations in the first-order red-shifted sideband, (e) power in the second-
order blue-shifted sideband, (f) power in the second-order red-shifted
sideband.
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The next figure is placed landscape. It is Fig. 1.2.
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This is a my second figure which was placed landscape. Although I have used

the same figure, I have renamed the label to fig:mpc-1. The second figure now

becomes Figure 1.3.
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1.14.1 Numbering Figures

If you wish your figures to be numbered 1-100 without any reference to the

chapter (e.g., Figure 1.1, 2.1, etc.), change the first line of your mainthesis.tex file

to read

"\documentclass[12pt]{thesis-2}".

1.14.1.1 This is a Subsubsection

This is my first subsubsection in Chapter 1.

1.15 Short Titles in the Table of Contents, List of Figures, or List of

Tables

The Table of Contents, List of Figures, or List of Tables usually show the

entire title of a section, subsection, etc. or table, or the entire caption of a figure.

If you put a short title in square brackets after

\section, \table, or \figure,

the short title will show in your Table of Contents or lists.

\section[Short Title]{Title of Section}

\subsection[Short Title]{Title of Subsection}

or when using a caption in a figure or table

\caption[Short Caption]{Full text of the caption.}
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1.16 Figures on Text Page

Normally figures in the thesis are placed on a page by themselves. The follow-

ing figure is placed on the page with text before and after the figure by adding [!!h]

after

\begin{figure}[!!h]

. Please note that the figure label is placed within the caption.

\begin{figure}[!!h]

\begin{center}

\includegraphics[width=5in]{mpc}

\end{center}

\caption[Short title]{Schematic illustrating receding horizon control.

\label{fig:mpc-2}}

\end{figure}

Time

k k+M

Control Horizon (M)

Prediction Horizon (P)

Control move (   u)∆

k+Pk+1k−3

Measured output (y)

Present time Predicted output (y)

PAST FUTURE

Input constraints

Output constraints

Set−point (Target)

Manipulated input (u)

^

Figure 1.4: Schematic illustrating receding horizon control.

This does not necessarily mean that the text before and after the figure will

be exactly what you want. Remember Latex will place the figure where it will fit
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on the page the best. The previous figure is Figs. 1.4.

1.17 Wrapping Text around Figure

Time

k k+M

Control Horizon (M)

Prediction Horizon (P)

Control move (   u)∆

k+Pk+1k−3

Measured output (y)

Present time Predicted output (y)

PAST FUTURE

Input constraints

Output constraints

Set−point (Target)

Manipulated input (u)

^

Figure 1.5: Text wrap around fig-
ure.

By way of summary, at the end of the ac-

tivity, I reminded the class of what we’d done:

by considering relatively nearby galaxies whose

distance we had measured by some other means,

we were able to establish a relationship locally

between redshift and distance. By way of sum-

mary, at the end of the activity, I reminded the

class of what we’d done: by considering relatively nearby galaxies whose distance

we had measured by some other means, we were able to establish a relationship lo-

cally between redshift and distance. By way of summary, at the end of the activity,

I reminded the class of what we’d done: by considering relatively nearby galaxies

whose distance we had measured by some other means, we were able to establish a

relationship locally between redshift and distance. By way of summary, at the end

of the activity, I reminded the class of what we’d done: by considering relatively

nearby galaxies whose distance we had measured by some other means, we were able

to establish a relationship locally between redshift and distance. See Fig. 1.5.

25



1.18 LaTeX – A Typesetting Program

A 13-page explanation of some of the features of LaTeX can be downloaded

from http://www.jgsee.kmutt.ac.th/exell/General/LaTeX.html.

1.19 Using Bibtex

Using Bibtex with Latex documents is not difficult. The bulk of the work is or-

ganizing your bibtex file, which is a data base compiled by you of the articles, books,

etc. which you use in the bibliographies or reference sections of your publications.

I have linked several files to this webpage, which will be helpful when you are

using Bibtex. These files can be downloaded from http://www.ireap.umd.edu/ireap/theses/bibtex.

Please read the file ”BibtexInstructions.pdf”. The first two pages explain how to

set up and run Bibtex; the remaining pages were taken from a published article and

show how the references were cited in the .tex file. The files BibtexInstructions.tex,

Galactic.bib, Dottie.bib are the original .tex files used for BibtexInstructions.pdf.

The file BibtexSamples.tex contains examples of the information needed for the var-

ious publications you wish to reference (e.g., articles in refereed journals, books,

unpublished articles, conference proceedings, etc.).

If you have questions concerning Bibtex, please contact me at 301-405-4955 or

dbrosius at umd.edu.
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1.20 APS Physical Review Style and Notation Guide

The following style guide may be downloaded from The American Physical

Society at http://forms.aps.org/author/styleguide.pdf: Physical Review Style and

Notation Guide, published by The American Physical Society, compiled and edited

by Anne Waldron, Peggy Judd, and Valerie Miller, February 1993. It may be old,

but it is very useful.
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Chapter 2

Stochastic Four-Wave-Mixing

2.1 Overview

The understanding of nonlinear processes in optical fibers is crucial towards

extending the capabilities of modern optical communication systems based on wave-

length division multiplexing (WDM), where each communication channel is repre-

sented by a unique wavelength. One of the nonlinear processes that limits the in-

formation carrying capacity of a WDM system is four-wave mixing (FWM), which

causes cross-talk between neighboring channels. This places a lower limit on the

wavelength separation between adjacent channels and an upper limit on the input

power in each channel. In this study, we describe a process by which the evolution

of FWM processes in an optical fiber can be used to estimate the inhomogeneities

in the fiber core material, in particular the fluctuations in the linear refractive index

of the fiber core.

Experiments measuring the evolution of FWM processes along a length of fiber

were carried out by Hart et al. [28] and are described in detail in Sec. 2.2. In this

experiment, two input pump waves at frequencies ω1 and ω2, interacted with each

other through the third-order nonlinearity of the fiber material to generate first-order

sidebands at frequencies ω3 = 2ω1 − ω2 and ω4 = 2ω2 − ω1. These waves further

interacted to produce second-order sidebands at ω5 = 2ω3 − ω4 and ω6 = 2ω4 − ω3.
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Higher-order sidebands were also generated. The normalized power in the sideband

at frequency ωm was represented by ρm. The evolution of the FWM processes was

characterized by the evolution of ρm(z) as a function of fiber length z.

In the present work, we make a quantitative comparison between these exper-

imental results and our numerical results based on efficient algorithms [8] to solve

the nonlinear Schrödinger equation (NLSE) that governs the system. The numeri-

cal model, its underlying assumptions and the results are described in Sec. 2.3. A

realistic description of a standard single mode optical fiber must take into account

the random phase perturbations a light wave undergoes while propagating through

it, without disturbing the underlying conservative properties of the system. The

NLSE needs to be suitably modified in order to incorporate the stochastic nature

of the propagation. In order to preserve the conservative properties of the system,

the stochastic terms in the NLSE must necessarily be multiplicative in nature as an

additive term acts as a source or a sink. An algorithm that achieves this with linear,

Gaussian, δ-correlated noise is outlined in Sec. 2.3. This algorithm preserves the un-

conditional stability of the system. At the same time, care is taken to transform the

stochastic NLSE from its original Ito representation [29] to the computationally fea-

sible Stratanovich representation [30] by compensating for the spurious linear drift

that results from integrating such stochastic differential equations [31, 32, 33, 34].

The dominant sources of phase noise are discussed in Sec. 2.4.

Conclusions on the relevance of the experiments of Hart et al. [28] and the

stochastic modeling presented here are summarized in Sec. 2.5.
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2.2 Experimental and Computational Background

In this work, we focus on tracing the evolution of the sidebands, generated

through FWM, along a length of optical fiber. The FWM spectral evolution along

50 m of fiber for two input pump power regimes (2.1 W and 5.5 W) was investigated

[28]. In the 2.1 W case, the sideband evolution followed a damped sinusoid along the

length of the fiber. The experiments also found that the two first-order sidebands

(ρ3-blueshifted and ρ4-redshifted from the two pumps) had different evolutions along

the fiber (with different spatial wavelengths). For the 5.5 W case, the evolution of

both first- and second-order sidebands was measured. The damping in the first-

order sidebands (ρ3 and ρ4) occured faster than in the 2.1 W case. Experiments

probing the dependence of the sideband power on the input power (ranging from

2 W to 17 W) were also performed at a fixed output length of 50 m of the fiber.

At the same fiber length, the optical spectra for input powers ranging from 2 W to

17 W were also recorded [28]. The spectral envelopes were observed to fit well to

a hyperbolic secant function and the fit parameters were recorded. Measurements

with a high-resolution wavemeter showed that one of the two pumps consisted of

two very closely spaced longitudinal modes (∆ν ∼ 0.5 GHz) which were not resolved

by the spectrometer used to record the FWM spectra. Inclusion of this multimode

nature of the pump input in their model was found to alter the sideband dynamics

dramatically and partly explained the asymmetry between the blue-shifted and red-

shifted sidebands though it did not account for the damping in the sidebands. This

was accounted for by adding weak phase fluctuations to the waves as they propagated
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along the fiber [28]. The physical source of these phase fluctuations was not known

at that time. However, the inclusion of the phase fluctuations into the model gave

excellent qualitative and quantitative agreement with experiment. Their model

involved integration of a system of coupled ODEs derived from the NLSE [35] by

a process of truncation that retained only the leading frequency components (the

pumps and the first- and second-order sidebands), a process justified by the fact that

the input pump waves are well approximated by a combination of monochromatic

waves. Their final numerical results are based on simulations using the truncated-

ODE model with Langevin noise terms representing phase fluctuations in the fiber.

Another physical source of stochasticity in their experiment was the inherent power

fluctuation in the lasers used as the input pumps. The level of fluctuations (5-20%)

was measured and incorporated appropriately into their model through stochastic

initial conditions. This explained the evolution of the level of observed fluctuations

in the sideband trajectories although it was found to be inadequate by itself, to

account for the damping of the trajectories. They found that all three physical

characteristics mentioned above, namely the multimode nature of the pump input,

the stochastic phase fluctuations along the length of the fiber, and the stochastic

initial power fluctuations were crucial to explaining the different features of the

experimental measurements [28].
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2.3 Stochastic NLSE Model

In the present work, we have developed and implemented an unconditionally

stable scheme for integrating the NLSE that successfully incorporates phase noise

into the SSFM. Thus, we are now in a position to harness the high frequency /

time resolution of the SSFM together with its efficient convergence properties. Due

to these advances, we are now able to do simulations with much higher frequency

resolution (60 MHz as compared to 300 GHz in the ODE model). This high res-

olution, coupled with an appropriate convolution scheme, enables us to compare

these simulated spectra with the composite spectra observed by the spectrometers

which had a resolution of ∼ 60 GHz. This was not possible with the truncated ODE

model as the resolution of the simulated spectra in that case was ∼ 300 GHz. For

exactly the same levels of phase fluctuations, and initial condition fluctuations as

used in Ref. [28], comparisons for the present NLSE model with the experimental

sideband evolution functions ρi(z) show excellent quantitative agreement. These

results, along with the algorithms employed, are described in detail in this section.

We have identified linear refractive index fluctuations along the fiber length to be

a strong candidate for a physical source of the stochastic phase fluctuations. A

comparison between the various possible sources is given in Sec. 2.4.

Under the assumption that the electric field of the light in the fiber has a slowly

varying envelope A(z, τ), and that the fiber medium has an instantaneous nonlinear

response, the system is well described by the nonlinear Schrödinger equation (NLSE)
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with a linear multiplicative stochastic term

∂U

∂z
+
iβ(2)

2T 2
0

∂2U

∂τ 2
+
αU

2
+ iΓ(z, τ)U − iγP0|U |2U = 0. (2.1)

Z is distance along the length of the fiber, U(z, τ) = A(z, τ)/
√
P0 is the complex

electric field envelope A(z, τ) normalized to the absolute amplitude of the field
√
P0,

P0 is the total power in the fiber, τ is time normalized to a convenient time scale

T0(∼ 1 ns) measured in a reference frame moving with the group velocity of the

pulse [τ = (t − z/vg)/T0]. The simulations are carried out for exactly the same

physical parameters as the experiments and simulations reported by Hart et al.

[28], i.e., β(2) = 55 (ps)2/km, is the group velocity dispersion of the fiber at the

operating wavelength λ0 ∼ 632 nm (k0 ∼ 107m−1). A loss of ∼ 6 dB/km gives α =

0.0014 m−1 as the loss in the fiber at this wavelength. The nonlinearity coefficient

γ = 0.019W−1m−1 is given by

γ =
ωaven

I
2

cAeff
, (2.2)

where Aeff is the effective core area of the fiber, nI2 is the Kerr coefficient for the

intensity-dependent refractive index, and ωave is the average angular frequency of

the wave envelope. Γ(z, τ) is a linear multiplicative phase noise field. In this study

the noise field is assumed to be δ-correlated in both space and time. The evolution

of the FWM dynamics is found to be sensitive to the strength of this noise field. It

can be physically interpreted as phase noise arising due to fluctuations in the linear

refractive index of the fiber medium. A detailed discussion of its physical origin is

given in Sec. 2.4.

The system was simulated using the Split-Step Fourier Method (SSFM) [8].
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An algorithm for appropriately incorporating stochastic phase fluctuations along the

length of the fiber in the SSFM was developed and is summarized below.

The NLSE is composed of linear and nonlinear terms, and can be written in

operator form as

∂U

∂z
= (D̂ + Ŝ + N̂)U

D̂ =
−iβ(2)

2T 2
0

∂2

∂τ 2
− α

2

Ŝ = iΓ(z, τ)

N̂ = iγP0|U |2, (2.3)

where D̂, Ŝ and N̂ are linear (dispersive), nonlinear and stochastic operators, re-

spectively. It has an exact solution for infinitesimal ∆z given by -

U(z + ∆z, τ) = exp[∆z(D̂ + Ŝ + N̂)]U(z, τ), (2.4)

which can be approximated by

U(z + ∆z, τ) ≈ exp[∆zD̂]exp[∆zŜ]exp[∆zN̂ ]U(z, τ). (2.5)

The execution of exp[∆zN̂ ] is carried out in τ -space:

B1(z, τ) = exp[∆zN̂ ]U(z, τ). (2.6)

The execution of exp[∆zŜ] and exp[∆zD̂] is carried out in ω-space.

In particular, the stochastic phase fluctuations are introduced by modifying

the phase φj of each frequency component ωj of the complex field according to

B2(z, ω) = F [B1(z, τ)]

B3(z, ωj) = exp[iδφ(z, ωj)]B2(z, ωj), (2.7)
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where F represents the Fourier transform operation.

This process only modifies the phase of each complex frequency component,

leaving its absolute value unchanged. Thus the algorithm conserves the total power

and the unconditional stability of the system.

The stochastic phase fluctuations δφ(z, ωj) are taken to be δ-correlated in

frequency as well as spatially along the fiber length. The Box-Muller algorithm [36]

was used to generate Gaussian random deviates from computer-generated uniform

random deviates r1j and r2j at each spatial step and for each frequency component

ωj. The fluctuations are given by

δφ(z, ωj) =
√
−2σ2

φ∆zln(r1j)cos(2πr2j). (2.8)

This is followed by the execution of exp[∆zD̂], which is also carried out in

Fourier space, followed by the inverse transform

U(z + ∆z, τ) = F−1[exp[∆zD̂(iω)]B3(z, ω)]. (2.9)

D̂(iω) is obtained by replacing (∂/∂τ) by iω.

The basic form of the initial complex wave envelope function is

U(0, τ) = exp

(
− τ 2

2τ 2
p

)
exp

(
iΩτ

2

)
+

exp
(
− iΩτ

2

)
 , (2.10)

where τp is the pulse width Tp =5 ns FWHM, normalized to the time scale T0,

Ω=366 GHz is the frequency detuning between the two laser sources normalized to

a frequency scale Ω0 = 62.5 MHz. Figure 2.1(a) shows a plot of this pulse |U(0, τ)|2.

The overall Gaussian envelope has an FWHM of 5 ns, the closely spaced dark lines
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Figure 2.1: Multimode pulse input to the NLSE: (a) input pulse in time
domain and (b) input spectrum.
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are due to the 366 GHz (∼3 ps) beating between the two input pump frequencies.

The 2 ns modulations on the pulse are due to the 0.5 GHz mode-structure in the

blue-shifted pump wave. Figure 2.1(b) shows the input spectrum of this pulse which

consists of two highly monochromatic pump waves with a detuning of Ω=366 GHz.

The spectrum of the blue-shifted pump, upon magnification, is seen to be composed

of two very closely spaced peaks, with a separation of ∆ν=0.5 GHz. Hart et al. [28]

did not use pulsed wave functions in their NLSE simulations as the size of the FFT

required to do so made it computationally prohibitive at that time. The size of the

FFT was chosen such that it would accommodate a time span of 16 ns in order to go

sufficiently far into the wings on the Gaussian pulse; and a frequency span of 16 THz

in order to accommodate all the sidebands generated and prevent spurious effects

due to the reflection boundary conditions implicit in the SSFM algorithm. These

considerations dictated the size of the FFT to be ≥(16 THz)·(16 ns) = 256000. The

nearest power of 2 is 218 = 262144, which has been used throughout the present work.

The incorporation of the pulsed nature of the light was found to be necessary in

explaining the dynamics. From the perspective of the coupled amplitude equations

used by Hart et al. [28], the present model is equivalent to a coupled-ODE model

with 218 coupled ODEs.

Upon incorporation of the multimode nature of the blue input pump laser

source and the stochastic fluctuations in the initial power in the lasers, the initial
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Figure 2.2: Effects of inclusion of the multimode nature (∆ν = 0.5 GHz)
of the blue-shifted input pump laser on the 1st order sideband evolution
as a function of fiber length for P0 = 2.1 W. Dashed curves represent sim-
ulations without the multimode nature and solid curves represent simu-
lations with the multimode nature. Ω = 366 GHz, γ = 0.019 W−1 m−1,
and β(2) = 55 ps2/km (a) power in the blue-shifted sideband, (b) power
in the red-shifted sideband.
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Figure 2.3: Effects of inclusion of the multimode nature (∆ν = 0.5 GHz)
of the blue-shifted input pump laser on the 1st order sideband evolution
as a function of fiber length for P0 = 5.5 W. Dashed curves represent sim-
ulations without the multimode nature and solid curves represent simu-
lations with the multimode nature. Ω = 366 GHz, γ = 0.019 W−1 m−1,
and β(2) = 55 ps2/km (a) power in the first-order blue-shifted sideband,
(b) power in the first-order red-shifted sideband, (c) power in the second-
order blue-shifted sideband, (d) power in the second-order red-shifted
sideband.
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Figure 2.4: Effects of inclusion of the pulsed nature (5 ns FWHM) of the
input pump laser light on the first-order sideband evolution as a function
of fiber length for P0 = 2.1 W. Dashed curves represent cw simulations
and solid curves represent pulsed simulations. Ω = 366 GHz, ∆ν = 0.5,
γ = 0.019 W−1m−1, and β(2) = 55 ps2/,km (a) power in the blue-shifted
sideband, (b) power in the red-shifted sideband.
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Figure 2.5: Effects of inclusion of the pulsed nature (5 ns FWHM) of the
input pump laser on the first- and second-order sideband evolution as
a function of fiber length for P0 = 5.5 W. Dashed curves represent cw
simulations and solid curves represent pulsed simulations. Ω = 366 GHz,
∆ν = 0.5, γ = 0.019 W−1m−1, and β(2) = 55 ps2/,km (a) power in the
first-order blue-shifted sideband, (b) power in the first-order red-shifted
sideband, (c) power in the second-order blue-shifted sideband, (d) power
in the second-order red-shifted sideband.
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wave function takes the form

U(0, τ) = exp

(
− τ 2

2τ 2
p

)


√
1+δρ1

2

 exp
(
i(Ω+∆ν)τ

2

)
+

exp
(
i(Ω−∆ν)τ

2

)


+
√

1 + δρ2exp
(
− iΩτ

2

)


. (2.11)

∆ν = 0.5 GHz is the frequency separation between the two longitudinal modes in

the blue-shifted pump. δρ1 and δρ2 are Gaussian random deviates (generated using

the Box-Muller algorithm [36]) that represent the initial power fluctuations in each

of the pump laser sources. Their standard deviations were taken to be, σρ1 = 0.2,

σρ2 = 0.11 for simulations from 0 m to 20 m, σρ1 = 0.12, σρ2 = 0.05 for simulations

from 20 m to 50 m along the length of the fiber. This is exactly the same prescription

used by Hart et al. [28] in their simulations and is dictated by their experimental

measurements of the fluctuations in the pump laser intensities.

At this point it is worth noting the effects of the inclusion of two attributes of

the input laser light, namely, the multimode nature of the blue-shifted pump, and

the pulsed nature of the input light (assumed to be cw in the simulations reported

by Hart et al. [28]).

Figure 2.2 shows a comparison between simulations with (solid curves) and

without (dashed curves) the multimode nature for an input pump power of 2.1

Watts. The simulations with the mode structure show the asymmetry between

the blue- and red-shifted sideband evolution, in particular, the difference in spatial

wavelength between the two, and a non-return to zero nature of the evolution, as

observed in the experimental data (black dots with error bars). These features are
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absent in the simulations without mode-structure. ρ3 and ρ4 stands for the first order

blue- and red-shifted sidebands respectively. Figure 2.3 shows the corresponding

comparison for the case of 5.5 Watts of input pump power. Here, too, the simulations

incorporating the multimode nature of the blue-shifted pump (solid curves) are seen

to be an improvement over those not incorporating it (dashed curves). A feature

of the experimental data (black dots with errorbars) is that for the ρ3 sideband,

the initial part of the evolution involves a peak followed by a shoulder, while for

the ρ4 sideband, the initial part of the evolution involves a shoulder followed by a

peak. This feature, too, is seen to occur as a result of the inclusion of the multimode

nature of the blue-shifted pump.

The effect of inclusion of the pulsed nature of the input beam is seen in Fig.

2.4 (for the 2.1 Watt case) and Fig. 2.5 (for the 5.5 Watt case). The solid dashes

represent simulations for a cw input beam and the solid curves represent those for a

pulsed input beam. The incorporation of the pulsed nature clearly results in damp-

ing of the sideband trajectories which are seen to come closer to the experimental

data [28] (black dots with error bars).

Use of the FFT algorithm makes evaluation relatively fast compared to other

finite-difference schemes. The computational error is O(∆z2), thus the solution

converges with decreasing spatial step-size ∆z.

The simulations were tested for the conservation of total power along the fiber

length (by setting the loss α to zero) and for the conservation of asymmetry [35, 28]
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given by

C(Z) =
∞∑
i=1

(2i− 1)[ρ2i−1(Z)− ρ2i(Z)]. (2.12)

A clearer picture of the evolution of the sidebands is obtained by plotting both

the power in the sidebands and their standard deviations as a function of length

along the fiber. Figures 2.6(a) and 2.6(b) show a comparison between simulation

and experiment of the evolution of the first-order blue-shifted (ρ3) and red-shifted

(ρ4) sidebands, respectively, for an input power of 2.1 W. The dashed curves rep-

resent NLSE simulations which include the stochastic nature of the input powers

of the pump lasers but exclude the stochastic phase fluctuations added along the

length of the fiber, an attribute which is included in the simulations represented by

the solid curves. The black dots with error bars represent the experimental data.

The measured sideband power, normalized to the total power in the fiber, is pe-

riodic in length but appears to be damping to a constant value. The measured

data also show a clear difference between the spatial wavelengths of oscillation of

the blue-shifted (ρ3) and red-shifted (ρ4) sidebands trajectories, respectively. Both

these features are captured well by both the simulations. Figures 2.6(c) and 2.6(d)

compare experimental and simulated measures of the evolution of the standard de-

viation in the sideband power along the fiber length. It is clearly observed that

simulations with phase noise added to the light field along the length of the fiber

(solid curves) are closer to the experimental data as compared to those that exclude

this feature (dashed curves). This indicates the instrumental nature of the phase

fluctuations in explaining key features of the dynamics.
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Figure 2.6: Comparison between the experimental measurements
[28](black), the random initial condition NLSE model excluding phase
noise (dashed curves) and the stochastic phase noise NLSE model (solid
curves) showing the first-order sideband evolution as a function of fiber
length for P0 = 2.1 W, Ω = 366 GHz, ∆ν = 0.5 GHz,γ = 0.019 W−1m−1,
and β(2) = 55ps2/km: dynamical evolution of the: (a) power in the blue-
shifted sideband, (b) power in the red-shifted sideband, (c) fluctuations
in the blue-shifted sideband, (d) fluctuations in the red-shifted sideband.
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The apparent damping of the periodic sideband trajectory is seen more dra-

matically in Figs. 2.7(a) and 2.7(b), which show the evolution of the first-order

sideband power along the fiber for an input power of 5.5 W. The two first-order

sidebands evolve differently. They appear to damp to a constant value at a faster

rate than for the case with an input pump power of 2.1 W. Here again, NLSE sim-

ulations that incorporate phase noise along the length of the fiber (solid curves)

are much more successful in accurately capturing the dynamical features of the

system than NLSE simulations that do not take this feature into account (dashed

curves). Figures 2.7(c) and 2.7(d) show a comparison between the simulated and

measured standard deviations. Comparisons for the second-order blue-shifted (ρ5)

and red-shifted (ρ6) sidebands, respectively, are shown in Figs. 2.7(e) and 2.7(f).

The observed dynamical evolution of the sidebands is found to depend sensi-

tively on the strength of the stochastic phase fluctuations. Yet, best agreement with

the experimental results of Hart et al. [28] is achieved with exactly the same noise

strength σ2
φ as used in their truncated ODE model, namely, σ2

φ = 0.0067 m−1. They

report that including phase noise in their FWM calculations resulted in a spurious

linear drift in the trajectories for the sideband power with length. To remove this

artifact of the computations, they added a linear loss to their coupled ODEs. They

set the loss coefficient α = 0.0046 m−1 by finding the value that removed this in-

creasing slope. We have observed exactly the same secular growth phenomenon for

a wide range of the noise strength σ2
φ and have arrived at an empirical prescription

for α namely, α ∼ σ2
φ, where σ2

φ is the variance of the added phase noise. This

indicates the general nature of dynamics resulting from the addition of stochastic,
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Figure 2.7: This figure caption is indented and single-spaced. Compar-
ison between the experimental measurements [28] (black), the random
initial condition NLSE model excluding phase noise (dashed curves) and
the stochastic phase noise NLSE model (solid curves) showing the first-
and second-order sideband evolution as a function of fiber length for
P0 = 5.5 W, Ω = 366 GHz, ∆ν = 0.5 GHz, γ = 0.019 W−1m−1, and
β(2) = 55 ps2/km: dynamical evolution of the: (a) power in the first-
order blue-shifted sideband, (b) power in the first-order red-shifted side-
band, (c) fluctuations in the first-order blue-shifted sideband, (d) fluc-
tuations in the first-order red-shifted sideband, (e) power in the second-
order blue-shifted sideband, (f) power in the second-order red-shifted
sideband.
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δ-correlated phase fluctuations to systems governed by nonlinear partial differential

equations [31].

It is remarkable that the strength of the phase noise required is the same in

both the 2.1 W and the 5.5 W cases. Further, it is worth noting that exactly the

same noise strength was used by Hart et al. [28], the difference being that they

introduced phase noise only in the pump frequencies, whereas we have introduced

it in all the Fourier modes (∼ 218). As a confirmation of this result, they also

performed experiments and numerical simulations examining the sideband power

dependence on the input power at a fixed length of 50.4 m of the same fiber. We

have repeated these simulations with the stochastic NLSE model and the results are

shown in Figs. 2.8(a) (blue-shifted sideband) and 2.8(b) (red-shifted sideband). The

experimental measurements of the sideband powers are represented by filled squares

and the results of numerical simulations are represented by triangles (without phase

noise) and by circles (with phase noise). The simulations are seen to follow the

general trend seen in the experiments. As the pump power is increased, the triangles

(without phase noise) start to disagree with experiment, whereas the circles (with

phase noise) are much closer to experiment. The phase noise strength used in these

simulations was exactly the same as that used in the simulations depicted in Figs. 2.6

and 2.7. The agreement between the phase noise simulations and the experimental

data was (once again) highly sensitive to the noise strength. Since this experiment

(unlike those shown in Figs. 2.2 - 2.7) is non-destructive, it can be used to deduce

the strength of phase noise processes in a given optical fiber. It will be shown in

Sec. 2.4 that a likely cause of the phase noise is fluctuation in the linear refractive
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index of the fiber. The noise strength deduced from the present computational study

corresponds to a refractive index inhomogeneity of 〈∆n2〉 ∼ 10−16.

Till now the comparisons between our simulations of the full NLSE and the

truncated ODE model give basically the same results, although with much better

agreement with experiment. However, the full NLSE can also provide a detailed

comparison with the experimental spectra. This was not available from the trun-

cated ODE model. The simulations reported in this work were carried out with a

very high frequency and time resolution in order to incorporate the fact that the

input light was not cw, but was composed of ∼ 5 ns long pulses; and that the number

of sidebands generated required the frequency spread of the FFT to be ∼ 16 THz,

while resolving a longitudinal mode-structure of ∆ν ∼ 0.5 GHz. The spectral reso-

lution used was ∼ 0.05 GHz, whereas the spectrometer used to observe the spectra

had a resolution 1000 times larger (∼ 50 GHz). To account for this difference, the

simulated spectra were first convolved with a Gaussian of unit peak and 62 GHz

FWHM, before they were compared with the observed spectra.

Figures 2.9(a) and 2.9(b) show three-dimensional plots of the average experi-

mental FWM output spectrum along the length of the fiber for input pump powers

of 2.1 W and 5.5 W, respectively (courtesy Hart et al. [28]). The vertical axis repre-

sents the intensity, normalized to the peak power in one of the input pumps, plotted

on a logarithmic scale. The pump frequencies are centered on +/ − Ω/2 and the

fiber length is increasing into the page. Figures 9(c) and 9(d) show the correspond-

ing comparisons based on simulations using the stochastic-NLSE model. The basic

features of the spectral evolution are captured by the simulations.
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Figure 2.8: Comparison between the experimental measurements (filled
squares), simulations without stochastic phase fluctuations (open trian-
gles) and with stochastic phase fluctuations (open circles) of the first-
order sideband power versus pump input power for L=50.39 m, and
Ω = 366 GHz: power in the (a) blue-shifted sideband and (b) red-shifted
sideband.
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Figure 2.9: Evolution of the FWM spectrum along the fiber (a) P=2.1 W,
experiment, (b) P=5.5 W, experiment, (c) P=2.1 W, stochastic-NLSE
model, (d) P=5.5 W, stochastic-NLSE model.

Figure 2.10: Experimental FWM output spectrum (solid line), convolved
spectra from simulations of the stochastic NLSE model (dashed line),
and hyperbolic secant envelope fit (dotted line) for pump input powers P0

of (a) 2.1 W, (b) 5.5 W, (c) 6.7 W, (d) 8.3 W, (e) 12.7 W, (f) 17.4 W, fiber
length L= 50.39 m, Ω = 366 GHz, ∆ν = 0.5 GHz, γ = 0.019 W−1m−1,
and β(2) = 55 ps2/km.
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Hart et al. [28] also documented the experimentally observed FWM output

spectra for a fixed fiber length of 50.39 meters for 6 different input pump powers.

They state the coefficients A and B of the hyperbolic secant envelopes that best fit

the output spectra which are given by

f(ω) = Asech(Bω), (2.13)

where A and B are the experimental fit parameters.

The hyperbolic secant parameters A and B, that best fit the simulated spectra

are exactly the same as those that best fit the experimental spectra [28] for all the

6 cases of input power considered. Figure 2.10 shows an overlap of the simulated

spectra (dashed line), with the experimental spectra (solid line) and the experimen-

tal hyperbolic secant envelope (dotted line) for 6 different pump powers, namely, (a)

2.1 W, (b) 5.5 W, (c) 6.7 W, (d) 8.3 W, (e) 12.7 W, (f) 17.4 W. The hyperbolic secant

parameters for each of these pump powers are (a) A=3.85 and B=0.36, (b) A=2.26

and B=0.27, (c) A=1.81, B=0.25, (d) A=1.56 and B=0.23, (e) A=0.98,B=0.20, and

(f) A=0.81 and B=0.20. The exact shapes of the simulated spectra match very well

with the experimental spectra for low input pump powers (2.1 W and 5.5 W), but

tend to lack the ”filled-in” character of the experimental spectra at higher powers

(6.7 W, 8.3 W, 12.7 W and 17.4 W).

2.4 Discussion

Hart et al. [28] postulated that strong candidates for the possible physical

sources of the phase fluctuations are stimulated Brillouin scattering, stimulated
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Raman scattering and fiber medium inhomogeneities. Brillouin scattering was elim-

inated as a source, since a backward propagating wave, which is a signature of

Brillouin scattering in optical fibers, was not observed in the experiments. We have

modeled stimulated Raman scattering [27, 37] for our system and have found no ev-

idence to support the hypothesis that it could be a possible source of the stochastic

phase fluctuations for fiber lengths up to 50 meters and pump power levels up to 5.5

Watts. A more detailed discussion of the Raman scattering simulations performed

is given in Chap. 3. Apart from these, quantum phase fluctuations are another well

known, though extremely weak, source of phase noise in optical fibers [8, 38].

Fiber medium inhomogeneities were identified as the major cause of the stochas-

tic phase fluctuations. These inhomogeneities can manifest themselves through

spatial and/or temporal fluctuations in the fiber parameters, namely, the linear

refractive index n0, the group velocity vg, the group velocity dispersion β(2) and

the nonlinearity γ [39]. Of these, the fluctuation in the linear refractive index was

found to be the only source of phase fluctuation that had a significant effect on

the dynamics. A relationship between the level of refractive index fluctuations and

the corresponding level of phase fluctuations has been arrived at. It is found that

refractive index fluctuations as small as σ2
n ∼ 10−17 m−1 can cause the desired phase

fluctuations. Possible sources of these refractive index fluctuations are discussed

below.

Consider the modified nonlinear Schrödinger equation (NLSE) which is stated

below, with the linear multiplicative noise term represented in terms of spatial and
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temporal fluctuations in the refractive index of the fiber.

∂U

∂z
+
iβ(2)

2T 2
0

∂2U

∂τ 2
+
αU

2
+ ik0δn(z, τ)U − iγP0|U |2U = 0, (2.14)

where δn(z, τ) is the spatial and temporal variation of the refractive index along the

fiber. It can be caused by temperature and density fluctuations in the fiber [40].

The thermodynamic estimate for ∆n is given by [40]

〈∆n2〉 =
−kTρ2

V 2

(
∂V

∂P

)
T

(
∂n

∂ρ

)2

T

+
kT 2

ρV Cv

(
∂n

∂T

)2

ρ

. (2.15)

This gives the mean-square index fluctuation in terms of the properties of the

material. It can be rewritten as

〈∆n2〉 =
Vρ + VT
V

= 〈∆n2〉ρ + 〈∆n2〉T . (2.16)

For a fiber of length z=1 m and radius r=2.82µm (Volume V=2.5 ×10−12 m3),

these have been calculated to be

〈∆n2〉ρ ∼ 10−21 ≡ 〈∆ρ2〉 ∼ 10−14kg
2

m6
,

〈∆n2〉T ∼ 10−23 ≡ 〈∆T 2〉 ∼ 10−12 ◦C2. (2.17)

It should be noted that 〈∆n2〉 ∝ (1/z) ⇒ δn ∝ (1/
√
z). The corresponding

phase fluctuation that this would lead to in the NLSE is given by δφ = k0δnz ∝
√
z,

which is equivalent to the prescription for incorporating phase fluctuations into the

stochastic NLSE model described in Sec. 2.3, namely, 〈∆φ2〉 = 6.7× 10−3z. Hart et

al. [28] used the same prescription and the same noise strength in their truncated-

ODE model. From this we can estimate the level of refractive index fluctuation that
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corresponds to the noise strength used in the simulations described in Sec. 2.3

〈∆n2〉 =
6.7× 10−3

k2
0

= 6.78× 10−17

≡ 〈∆T 2〉 ∼ 10−6 ◦C2 ≡ ∆T ∼ 10−3 ◦C (2.18)

The temperature coefficient of the refractive index of silica [40], (∂n/∂T )ρ ∼

10−5 ◦C−1. Thus even small spatio-temporal temperature fluctuations of ∼ 10−3 ◦C

are enough to cause the inferred level of refractive index fluctuations.

The refractive index fluctuations could also be due to inhomogeneities in the

density of the fiber material, frozen in at the time of manufacture of the fiber. The

simulations were averaged over ∼ 600 iterations to get a good estimate of the power

fluctuations in the sidebands. Initially, simulations were performed with a different

phase noise distribution for each iteration. Later, a particular (arbitrary) phase noise

distribution was selected and frozen for all the iterations. This did not reduce the

level of damping observed in the sideband trajectories provided that the strength of

the phase noise was kept the same, thus indicating that density fluctuations induced

during fiber manufacture could be a possible source. The phase noise was modeled

as δ-correlated in both space and time. A more realistic approach would be to use

correlated noise. Numerical methods to incorporate linear multiplicative correlated

noise into the NLSE have been developed by M.J. Werner et al. [32].

2.5 Conclusions

The role of stochasticity in the dynamical evolution of four-wave-mixing pro-

cesses in an optical fiber has been investigated. This research consisted of theoretical
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and numerical computations. It focuses on tracing the evolution of the sidebands,

generated through FWM, along a length of optical fiber. Detailed comparisons

were made with the experimental results of Hart et al. [28] and the agreement was

excellent. The present work uses numerical techniques that have much higher res-

olution and better efficiency, and it presents a theoretical basis for the role of the

stochasticity in the dynamics. The system is known to be governed by the nonlinear

Schrödinger equation (NLSE) to a very good approximation [8].

A powerful technique that can be used for simulations of the stochastic NLSE

is the Split-step Fourier Method (SSFM) [8]. An algorithm for the direct implemen-

tation of stochastic processes along the length of the fiber in the SSFM has been

developed. The advantages of this approach with respect to the coupled-ODE ap-

proach are that we can carry out simulations with much higher frequency and time

resolution without sacrificing computational efficiency.

The physical sources of these stochastic phase fluctuations are investigated

quantitatively and are identified to be due to fluctuations in the linear refractive

index of the fiber. Strong candidates for the causes of these refractive index fluctu-

ations are temperature fluctuations in the fiber medium caused by the fluctuating

temperature of the fiber environment, density fluctuations in the fiber medium frozen

into the fiber during manufacture, and intrinsic thermodynamic fluctuations in the

temperature and density of the fiber.

The experiments performed by Hart et al. [28] can be used to determine the

level of these refractive index fluctuations in commercial fibers. Results described

in Figs. 2 and 3 represent a destructive experiment that measures the sideband
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evolution with fiber length for a fixed input pump power, necessarily requiring the

fiber to be cut repeatedly. The level of refractive index fluctuations can be used as

a parameter in the simulations to best fit the experimental results. Alternatively,

Fig. 4 represents a non-destructive experiment that measures the sideband evolution

with input pump power for a fixed fiber length. These experiments are found to be

effective for estimating the refractive index fluctuations, as the dynamics is observed

to be sensitively dependent on the strength of the phase fluctuations.
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Chapter 3

Stochastic Four-Wave-Mixing

3.1 Overview

The understanding of nonlinear processes in optical fibers is crucial towards

extending the capabilities of modern optical communication systems based on wave-

length division multiplexing (WDM), where each communication channel is repre-

sented by a unique wavelength. One of the nonlinear processes that limits the in-

formation carrying capacity of a WDM system is four-wave mixing (FWM), which

causes cross-talk between neighboring channels. This places a lower limit on the

wavelength separation between adjacent channels and an upper limit on the input

power in each channel. In this study, we describe a process by which the evolution

of FWM processes in an optical fiber can be used to estimate the inhomogeneities

in the fiber core material, in particular the fluctuations in the linear refractive index

of the fiber core.

Experiments measuring the evolution of FWM processes along a length of fiber

were carried out by Hart et al. [28] and are described in detail in Sec. 2.2. In this

experiment, two input pump waves at frequencies ω1 and ω2, interacted with each

other through the third-order nonlinearity of the fiber material to generate first-order

sidebands at frequencies ω3 = 2ω1 − ω2 and ω4 = 2ω2 − ω1. These waves further

interacted to produce second-order sidebands at ω5 = 2ω3 − ω4 and ω6 = 2ω4 − ω3.
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Higher-order sidebands were also generated. The normalized power in the sideband

at frequency ωm was represented by ρm. The evolution of the FWM processes was

characterized by the evolution of ρm(z) as a function of fiber length z.

In the present work, we make a quantitative comparison between these exper-

imental results and our numerical results based on efficient algorithms [8] to solve

the nonlinear Schrödinger equation (NLSE) that governs the system. The numeri-

cal model, its underlying assumptions and the results are described in Sec. 3.3. A

realistic description of a standard single mode optical fiber must take into account

the random phase perturbations a light wave undergoes while propagating through

it, without disturbing the underlying conservative properties of the system. The

NLSE needs to be suitably modified in order to incorporate the stochastic nature

of the propagation. In order to preserve the conservative properties of the system,

the stochastic terms in the NLSE must necessarily be multiplicative in nature as an

additive term acts as a source or a sink. An algorithm that achieves this with linear,

Gaussian, δ-correlated noise is outlined in Sec. 3.3. This algorithm preserves the un-

conditional stability of the system. At the same time, care is taken to transform the

stochastic NLSE from its original Ito representation [29] to the computationally fea-

sible Stratanovich representation [30] by compensating for the spurious linear drift

that results from integrating such stochastic differential equations [31, 32, 33, 34].

The dominant sources of phase noise are discussed in Sec. 3.4.

Conclusions on the relevance of the experiments of Hart et al. [28] and the

stochastic modeling presented here are summarized in Sec. 2.5.

59



3.2 Experimental and Computational Background

In this work, we focus on tracing the evolution of the sidebands, generated

through FWM, along a length of optical fiber. The FWM spectral evolution along

50 m of fiber for two input pump power regimes (2.1 W and 5.5 W) was investigated

[28]. In the 2.1 W case, the sideband evolution followed a damped sinusoid along the

length of the fiber. The experiments also found that the two first-order sidebands

(ρ3-blueshifted and ρ4-redshifted from the two pumps) had different evolutions along

the fiber (with different spatial wavelengths). For the 5.5 W case, the evolution of

both first- and second-order sidebands was measured. The damping in the first-

order sidebands (ρ3 and ρ4) occured faster than in the 2.1 W case. Experiments

probing the dependence of the sideband power on the input power (ranging from

2 W to 17 W) were also performed at a fixed output length of 50 m of the fiber.

At the same fiber length, the optical spectra for input powers ranging from 2 W to

17 W were also recorded [28]. The spectral envelopes were observed to fit well to

a hyperbolic secant function and the fit parameters were recorded. Measurements

with a high-resolution wavemeter showed that one of the two pumps consisted of

two very closely spaced longitudinal modes (∆ν ∼ 0.5 GHz) which were not resolved

by the spectrometer used to record the FWM spectra. Inclusion of this multimode

nature of the pump input in their model was found to alter the sideband dynamics

dramatically and partly explained the asymmetry between the blue-shifted and red-

shifted sidebands though it did not account for the damping in the sidebands. This

was accounted for by adding weak phase fluctuations to the waves as they propagated
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along the fiber [28]. The physical source of these phase fluctuations was not known

at that time. However, the inclusion of the phase fluctuations into the model gave

excellent qualitative and quantitative agreement with experiment. Their model

involved integration of a system of coupled ODEs derived from the NLSE [35] by

a process of truncation that retained only the leading frequency components (the

pumps and the first- and second-order sidebands), a process justified by the fact that

the input pump waves are well approximated by a combination of monochromatic

waves. Their final numerical results are based on simulations using the truncated-

ODE model with Langevin noise terms representing phase fluctuations in the fiber.

Another physical source of stochasticity in their experiment was the inherent power

fluctuation in the lasers used as the input pumps. The level of fluctuations (5-20%)

was measured and incorporated appropriately into their model through stochastic

initial conditions. This explained the evolution of the level of observed fluctuations

in the sideband trajectories although it was found to be inadequate by itself, to

account for the damping of the trajectories. They found that all three physical

characteristics mentioned above, namely the multimode nature of the pump input,

the stochastic phase fluctuations along the length of the fiber, and the stochastic

initial power fluctuations were crucial to explaining the different features of the

experimental measurements [28].
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3.3 Stochastic NLSE Model

In the present work, we have developed and implemented an unconditionally

stable scheme for integrating the NLSE that successfully incorporates phase noise

into the SSFM. Thus, we are now in a position to harness the high frequency /

time resolution of the SSFM together with its efficient convergence properties. Due

to these advances, we are now able to do simulations with much higher frequency

resolution (60 MHz as compared to 300 GHz in the ODE model). This high res-

olution, coupled with an appropriate convolution scheme, enables us to compare

these simulated spectra with the composite spectra observed by the spectrometers

which had a resolution of ∼ 60 GHz. This was not possible with the truncated ODE

model as the resolution of the simulated spectra in that case was ∼ 300 GHz. For

exactly the same levels of phase fluctuations, and initial condition fluctuations as

used in Ref. [28], comparisons for the present NLSE model with the experimental

sideband evolution functions ρi(z) show excellent quantitative agreement. These

results, along with the algorithms employed, are described in detail in this section.

We have identified linear refractive index fluctuations along the fiber length to be

a strong candidate for a physical source of the stochastic phase fluctuations. A

comparison between the various possible sources is given in Sec. 3.4.

Under the assumption that the electric field of the light in the fiber has a slowly

varying envelope A(z, τ), and that the fiber medium has an instantaneous nonlinear

response, the system is well described by the nonlinear Schrödinger equation (NLSE)
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with a linear multiplicative stochastic term

∂U

∂z
+
iβ(2)

2T 2
0

∂2U

∂τ 2
+
αU

2
+ iΓ(z, τ)U − iγP0|U |2U = 0. (3.1)

Z is distance along the length of the fiber, U(z, τ) = A(z, τ)/
√
P0 is the complex

electric field envelope A(z, τ) normalized to the absolute amplitude of the field
√
P0,

P0 is the total power in the fiber, τ is time normalized to a convenient time scale

T0(∼ 1 ns) measured in a reference frame moving with the group velocity of the

pulse [τ = (t − z/vg)/T0]. The simulations are carried out for exactly the same

physical parameters as the experiments and simulations reported by Hart et al.

[28], i.e., β(2) = 55 (ps)2/km, is the group velocity dispersion of the fiber at the

operating wavelength λ0 ∼ 632 nm (k0 ∼ 107m−1). A loss of ∼ 6 dB/km gives α =

0.0014 m−1 as the loss in the fiber at this wavelength. The nonlinearity coefficient

γ = 0.019W−1m−1 is given by

γ =
ωaven

I
2

cAeff
, (3.2)

where Aeff is the effective core area of the fiber, nI2 is the Kerr coefficient for the

intensity-dependent refractive index, and ωave is the average angular frequency of

the wave envelope. Γ(z, τ) is a linear multiplicative phase noise field. In this study

the noise field is assumed to be δ-correlated in both space and time. The evolution

of the FWM dynamics is found to be sensitive to the strength of this noise field. It

can be physically interpreted as phase noise arising due to fluctuations in the linear

refractive index of the fiber medium. A detailed discussion of its physical origin is

given in Sec. 3.4.

The system was simulated using the Split-Step Fourier Method (SSFM) [8].
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An algorithm for appropriately incorporating stochastic phase fluctuations along the

length of the fiber in the SSFM was developed and is summarized below.

The NLSE is composed of linear and nonlinear terms, and can be written in

operator form as

∂U

∂z
= (D̂ + Ŝ + N̂)U

D̂ =
−iβ(2)

2T 2
0

∂2

∂τ 2
− α

2

Ŝ = iΓ(z, τ)

N̂ = iγP0|U |2, (3.3)

where D̂, Ŝ and N̂ are linear (dispersive), nonlinear and stochastic operators, re-

spectively. It has an exact solution for infinitesimal ∆z given by -

U(z + ∆z, τ) = exp[∆z(D̂ + Ŝ + N̂)]U(z, τ), (3.4)

which can be approximated by

U(z + ∆z, τ) ≈ exp[∆zD̂]exp[∆zŜ]exp[∆zN̂ ]U(z, τ). (3.5)

The execution of exp[∆zN̂ ] is carried out in τ -space:

B1(z, τ) = exp[∆zN̂ ]U(z, τ). (3.6)

The execution of exp[∆zŜ] and exp[∆zD̂] is carried out in ω-space.

In particular, the stochastic phase fluctuations are introduced by modifying

the phase φj of each frequency component ωj of the complex field according to

B2(z, ω) = F [B1(z, τ)]

B3(z, ωj) = exp[iδφ(z, ωj)]B2(z, ωj), (3.7)
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where F represents the Fourier transform operation.

This process only modifies the phase of each complex frequency component,

leaving its absolute value unchanged. Thus the algorithm conserves the total power

and the unconditional stability of the system.

The stochastic phase fluctuations δφ(z, ωj) are taken to be δ-correlated in

frequency as well as spatially along the fiber length. The Box-Muller algorithm [36]

was used to generate Gaussian random deviates from computer-generated uniform

random deviates r1j and r2j at each spatial step and for each frequency component

ωj. The fluctuations are given by

δφ(z, ωj) =
√
−2σ2

φ∆zln(r1j)cos(2πr2j). (3.8)

This is followed by the execution of exp[∆zD̂], which is also carried out in

Fourier space, followed by the inverse transform

U(z + ∆z, τ) = F−1[exp[∆zD̂(iω)]B3(z, ω)]. (3.9)

D̂(iω) is obtained by replacing (∂/∂τ) by iω.

The basic form of the initial complex wave envelope function is

U(0, τ) = exp

(
− τ 2

2τ 2
p

)
exp

(
iΩτ

2

)
+

exp
(
− iΩτ

2

)
 , (3.10)

where τp is the pulse width Tp =5 ns FWHM, normalized to the time scale T0,

Ω=366 GHz is the frequency detuning between the two laser sources normalized to

a frequency scale Ω0 = 62.5 MHz. Figure 3.1(a) shows a plot of this pulse |U(0, τ)|2.

The overall Gaussian envelope has an FWHM of 5 ns, the closely spaced dark lines
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Figure 3.1: Multimode pulse input to the NLSE: (a) input pulse in time domain
and (b) input spectrum.
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are due to the 366 GHz (∼3 ps) beating between the two input pump frequencies.

The 2 ns modulations on the pulse are due to the 0.5 GHz mode-structure in the

blue-shifted pump wave. Figure 3.1(b) shows the input spectrum of this pulse which

consists of two highly monochromatic pump waves with a detuning of Ω=366 GHz.

The spectrum of the blue-shifted pump, upon magnification, is seen to be composed

of two very closely spaced peaks, with a separation of ∆ν=0.5 GHz. Hart et al. [28]

did not use pulsed wave functions in their NLSE simulations as the size of the FFT

required to do so made it computationally prohibitive at that time. The size of the

FFT was chosen such that it would accommodate a time span of 16 ns in order to go

sufficiently far into the wings on the Gaussian pulse; and a frequency span of 16 THz

in order to accommodate all the sidebands generated and prevent spurious effects

due to the reflection boundary conditions implicit in the SSFM algorithm. These

considerations dictated the size of the FFT to be ≥(16 THz)·(16 ns) = 256000. The

nearest power of 2 is 218 = 262144, which has been used throughout the present work.

The incorporation of the pulsed nature of the light was found to be necessary in

explaining the dynamics. From the perspective of the coupled amplitude equations

used by Hart et al. [28], the present model is equivalent to a coupled-ODE model

with 218 coupled ODEs.

Upon incorporation of the multimode nature of the blue input pump laser

source and the stochastic fluctuations in the initial power in the lasers, the initial
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Figure 3.2: Effects of inclusion of the multimode nature (∆ν = 0.5 GHz)
of the blue-shifted input pump laser on the 1st order sideband evolution
as a function of fiber length for P0 = 2.1 W. Dashed curves represent sim-
ulations without the multimode nature and solid curves represent simu-
lations with the multimode nature. Ω = 366 GHz, γ = 0.019 W−1 m−1,
and β(2) = 55 ps2/km (a) power in the blue-shifted sideband, (b) power
in the red-shifted sideband.
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Figure 3.3: Effects of inclusion of the multimode nature (∆ν = 0.5 GHz)

of the blue-shifted input pump laser on the 1st order sideband evolution

as a function of fiber length for P0 = 5.5 W. Dashed curves represent sim-

ulations without the multimode nature and solid curves represent simu-

lations with the multimode nature. Ω = 366 GHz, γ = 0.019 W−1 m−1,

and β(2) = 55 ps2/km (a) power in the first-order blue-shifted sideband,

(b) power in the first-order red-shifted sideband, (c) power in the second-

order blue-shifted sideband, (d) power in the second-order red-shifted

sideband.
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Figure 3.4: Effects of inclusion of the pulsed nature (5 ns FWHM) of the

input pump laser light on the first-order sideband evolution as a function

of fiber length for P0 = 2.1 W. Dashed curves represent cw simulations

and solid curves represent pulsed simulations. Ω = 366 GHz, ∆ν = 0.5,

γ = 0.019 W−1m−1, and β(2) = 55 ps2/,km (a) power in the blue-shifted

sideband, (b) power in the red-shifted sideband.
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Figure 3.5: Effects of inclusion of the pulsed nature (5 ns FWHM) of the

input pump laser on the first- and second-order sideband evolution as

a function of fiber length for P0 = 5.5 W. Dashed curves represent cw

simulations and solid curves represent pulsed simulations. Ω = 366 GHz,

∆ν = 0.5, γ = 0.019 W−1m−1, and β(2) = 55 ps2/,km (a) power in the

first-order blue-shifted sideband, (b) power in the first-order red-shifted

sideband, (c) power in the second-order blue-shifted sideband, (d) power

in the second-order red-shifted sideband.
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wave function takes the form

U(0, τ) = exp

(
− τ 2

2τ 2
p

)


√
1+δρ1

2

 exp
(
i(Ω+∆ν)τ

2

)
+

exp
(
i(Ω−∆ν)τ

2

)


+
√

1 + δρ2exp
(
− iΩτ

2

)


. (3.11)

∆ν = 0.5 GHz is the frequency separation between the two longitudinal modes in

the blue-shifted pump. δρ1 and δρ2 are Gaussian random deviates (generated using

the Box-Muller algorithm [36]) that represent the initial power fluctuations in each

of the pump laser sources. Their standard deviations were taken to be, σρ1 = 0.2,

σρ2 = 0.11 for simulations from 0 m to 20 m, σρ1 = 0.12, σρ2 = 0.05 for simulations

from 20 m to 50 m along the length of the fiber. This is exactly the same prescription

used by Hart et al. [28] in their simulations and is dictated by their experimental

measurements of the fluctuations in the pump laser intensities.

At this point it is worth noting the effects of the inclusion of two attributes of

the input laser light, namely, the multimode nature of the blue-shifted pump, and

the pulsed nature of the input light (assumed to be cw in the simulations reported

by Hart et al. [28]).

Figure 3.2 shows a comparison between simulations with (solid curves) and

without (dashed curves) the multimode nature for an input pump power of 2.1

Watts. The simulations with the mode structure show the asymmetry between

the blue- and red-shifted sideband evolution, in particular, the difference in spatial

wavelength between the two, and a non-return to zero nature of the evolution, as

observed in the experimental data (black dots with error bars). These features are
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absent in the simulations without mode-structure. ρ3 and ρ4 stands for the first order

blue- and red-shifted sidebands respectively. Figure 3.3 shows the corresponding

comparison for the case of 5.5 Watts of input pump power. Here, too, the simulations

incorporating the multimode nature of the blue-shifted pump (solid curves) are seen

to be an improvement over those not incorporating it (dashed curves). A feature

of the experimental data (black dots with errorbars) is that for the ρ3 sideband,

the initial part of the evolution involves a peak followed by a shoulder, while for

the ρ4 sideband, the initial part of the evolution involves a shoulder followed by a

peak. This feature, too, is seen to occur as a result of the inclusion of the multimode

nature of the blue-shifted pump.

The effect of inclusion of the pulsed nature of the input beam is seen in Fig.

3.4 (for the 2.1 Watt case) and Fig. 3.5 (for the 5.5 Watt case). The solid dashes

represent simulations for a cw input beam and the solid curves represent those for a

pulsed input beam. The incorporation of the pulsed nature clearly results in damp-

ing of the sideband trajectories which are seen to come closer to the experimental

data [28] (black dots with error bars).

Use of the FFT algorithm makes evaluation relatively fast compared to other

finite-difference schemes. The computational error is O(∆z2), thus the solution

converges with decreasing spatial step-size ∆z.

The simulations were tested for the conservation of total power along the fiber

length (by setting the loss α to zero) and for the conservation of asymmetry [35, 28]

73



given by

C(Z) =
∞∑
i=1

(2i− 1)[ρ2i−1(Z)− ρ2i(Z)]. (3.12)

A clearer picture of the evolution of the sidebands is obtained by plotting both

the power in the sidebands and their standard deviations as a function of length

along the fiber. Figures 3.6(a) and 3.6(b) show a comparison between simulation

and experiment of the evolution of the first-order blue-shifted (ρ3) and red-shifted

(ρ4) sidebands, respectively, for an input power of 2.1 W. The dashed curves rep-

resent NLSE simulations which include the stochastic nature of the input powers

of the pump lasers but exclude the stochastic phase fluctuations added along the

length of the fiber, an attribute which is included in the simulations represented by

the solid curves. The black dots with error bars represent the experimental data.

The measured sideband power, normalized to the total power in the fiber, is pe-

riodic in length but appears to be damping to a constant value. The measured

data also show a clear difference between the spatial wavelengths of oscillation of

the blue-shifted (ρ3) and red-shifted (ρ4) sidebands trajectories, respectively. Both

these features are captured well by both the simulations. Figures 3.6(c) and 2.6(d)

compare experimental and simulated measures of the evolution of the standard de-

viation in the sideband power along the fiber length. It is clearly observed that

simulations with phase noise added to the light field along the length of the fiber

(solid curves) are closer to the experimental data as compared to those that exclude

this feature (dashed curves). This indicates the instrumental nature of the phase

fluctuations in explaining key features of the dynamics.
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Figure 3.6: Comparison between the experimental measurements
[28](black), the random initial condition NLSE model excluding phase
noise (dashed curves) and the stochastic phase noise NLSE model (solid
curves) showing the first-order sideband evolution as a function of fiber
length for P0 = 2.1 W, Ω = 366 GHz, ∆ν = 0.5 GHz,γ = 0.019 W−1m−1,
and β(2) = 55ps2/km: dynamical evolution of the: (a) power in the blue-
shifted sideband, (b) power in the red-shifted sideband, (c) fluctuations
in the blue-shifted sideband, (d) fluctuations in the red-shifted sideband.
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The apparent damping of the periodic sideband trajectory is seen more dra-

matically in Figs. 3.7(a) and 3.7(b), which show the evolution of the first-order

sideband power along the fiber for an input power of 5.5 W. The two first-order

sidebands evolve differently. They appear to damp to a constant value at a faster

rate than for the case with an input pump power of 2.1 W. Here again, NLSE sim-

ulations that incorporate phase noise along the length of the fiber (solid curves)

are much more successful in accurately capturing the dynamical features of the

system than NLSE simulations that do not take this feature into account (dashed

curves). Figures 3.7(c) and 3.7(d) show a comparison between the simulated and

measured standard deviations. Comparisons for the second-order blue-shifted (ρ5)

and red-shifted (ρ6) sidebands, respectively, are shown in Figs. 3.7(e) and 3.7(f).

The observed dynamical evolution of the sidebands is found to depend sensi-

tively on the strength of the stochastic phase fluctuations. Yet, best agreement with

the experimental results of Hart et al. [28] is achieved with exactly the same noise

strength σ2
φ as used in their truncated ODE model, namely, σ2

φ = 0.0067 m−1. They

report that including phase noise in their FWM calculations resulted in a spurious

linear drift in the trajectories for the sideband power with length. To remove this

artifact of the computations, they added a linear loss to their coupled ODEs. They

set the loss coefficient α = 0.0046 m−1 by finding the value that removed this in-

creasing slope. We have observed exactly the same secular growth phenomenon for

a wide range of the noise strength σ2
φ and have arrived at an empirical prescription

for α namely, α ∼ σ2
φ, where σ2

φ is the variance of the added phase noise. This

indicates the general nature of dynamics resulting from the addition of stochastic,
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Figure 3.7: This figure caption is indented and single-spaced. Compar-
ison between the experimental measurements [28] (black), the random
initial condition NLSE model excluding phase noise (dashed curves) and
the stochastic phase noise NLSE model (solid curves) showing the first-
and second-order sideband evolution as a function of fiber length for
P0 = 5.5 W, Ω = 366 GHz, ∆ν = 0.5 GHz, γ = 0.019 W−1m−1, and
β(2) = 55 ps2/km: dynamical evolution of the: (a) power in the first-
order blue-shifted sideband, (b) power in the first-order red-shifted side-
band, (c) fluctuations in the first-order blue-shifted sideband, (d) fluc-
tuations in the first-order red-shifted sideband, (e) power in the second-
order blue-shifted sideband, (f) power in the second-order red-shifted
sideband.
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δ-correlated phase fluctuations to systems governed by nonlinear partial differential

equations [31].

It is remarkable that the strength of the phase noise required is the same in

both the 2.1 W and the 5.5 W cases. Further, it is worth noting that exactly the

same noise strength was used by Hart et al. [28], the difference being that they

introduced phase noise only in the pump frequencies, whereas we have introduced

it in all the Fourier modes (∼ 218). As a confirmation of this result, they also

performed experiments and numerical simulations examining the sideband power

dependence on the input power at a fixed length of 50.4 m of the same fiber. We

have repeated these simulations with the stochastic NLSE model and the results are

shown in Figs. 3.8(a) (blue-shifted sideband) and 3.8(b) (red-shifted sideband). The

experimental measurements of the sideband powers are represented by filled squares

and the results of numerical simulations are represented by triangles (without phase

noise) and by circles (with phase noise). The simulations are seen to follow the

general trend seen in the experiments. As the pump power is increased, the triangles

(without phase noise) start to disagree with experiment, whereas the circles (with

phase noise) are much closer to experiment. The phase noise strength used in these

simulations was exactly the same as that used in the simulations depicted in Figs. 3.6

and 3.7. The agreement between the phase noise simulations and the experimental

data was (once again) highly sensitive to the noise strength. Since this experiment

(unlike those shown in Figs. 3.2 - 3.7) is non-destructive, it can be used to deduce

the strength of phase noise processes in a given optical fiber. It will be shown in

Sec. 3.4 that a likely cause of the phase noise is fluctuation in the linear refractive
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index of the fiber. The noise strength deduced from the present computational study

corresponds to a refractive index inhomogeneity of 〈∆n2〉 ∼ 10−16.

Till now the comparisons between our simulations of the full NLSE and the

truncated ODE model give basically the same results, although with much better

agreement with experiment. However, the full NLSE can also provide a detailed

comparison with the experimental spectra. This was not available from the trun-

cated ODE model. The simulations reported in this work were carried out with a

very high frequency and time resolution in order to incorporate the fact that the

input light was not cw, but was composed of ∼ 5 ns long pulses; and that the number

of sidebands generated required the frequency spread of the FFT to be ∼ 16 THz,

while resolving a longitudinal mode-structure of ∆ν ∼ 0.5 GHz. The spectral reso-

lution used was ∼ 0.05 GHz, whereas the spectrometer used to observe the spectra

had a resolution 1000 times larger (∼ 50 GHz). To account for this difference, the

simulated spectra were first convolved with a Gaussian of unit peak and 62 GHz

FWHM, before they were compared with the observed spectra.

Figures 3.9(a) and 3.9(b) show three-dimensional plots of the average experi-

mental FWM output spectrum along the length of the fiber for input pump powers

of 2.1 W and 5.5 W, respectively (courtesy Hart et al. [28]). The vertical axis repre-

sents the intensity, normalized to the peak power in one of the input pumps, plotted

on a logarithmic scale. The pump frequencies are centered on +/ − Ω/2 and the

fiber length is increasing into the page. Figures 9(c) and 9(d) show the correspond-

ing comparisons based on simulations using the stochastic-NLSE model. The basic

features of the spectral evolution are captured by the simulations.
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Figure 3.8: Comparison between the experimental measurements (filled

squares), simulations without stochastic phase fluctuations (open trian-

gles) and with stochastic phase fluctuations (open circles) of the first-

order sideband power versus pump input power for L=50.39 m, and

Ω = 366 GHz: power in the (a) blue-shifted sideband and (b) red-shifted

sideband.
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Figure 3.9: Evolution of the FWM spectrum along the fiber (a) P=2.1 W,

experiment, (b) P=5.5 W, experiment, (c) P=2.1 W, stochastic-NLSE

model, (d) P=5.5 W, stochastic-NLSE model.

Figure 3.10: Experimental FWM output spectrum (solid line), convolved
spectra from simulations of the stochastic NLSE model (dashed line),
and hyperbolic secant envelope fit (dotted line) for pump input powers P0

of (a) 2.1 W, (b) 5.5 W, (c) 6.7 W, (d) 8.3 W, (e) 12.7 W, (f) 17.4 W, fiber
length L= 50.39 m, Ω = 366 GHz, ∆ν = 0.5 GHz, γ = 0.019 W−1m−1,
and β(2) = 55 ps2/km.
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Hart et al. [28] also documented the experimentally observed FWM output

spectra for a fixed fiber length of 50.39 meters for 6 different input pump powers.

They state the coefficients A and B of the hyperbolic secant envelopes that best fit

the output spectra which are given by

f(ω) = Asech(Bω), (3.13)

where A and B are the experimental fit parameters.

The hyperbolic secant parameters A and B, that best fit the simulated spectra

are exactly the same as those that best fit the experimental spectra [28] for all the

6 cases of input power considered. Figure 2.10 shows an overlap of the simulated

spectra (dashed line), with the experimental spectra (solid line) and the experimen-

tal hyperbolic secant envelope (dotted line) for 6 different pump powers, namely, (a)

2.1 W, (b) 5.5 W, (c) 6.7 W, (d) 8.3 W, (e) 12.7 W, (f) 17.4 W. The hyperbolic secant

parameters for each of these pump powers are (a) A=3.85 and B=0.36, (b) A=2.26

and B=0.27, (c) A=1.81, B=0.25, (d) A=1.56 and B=0.23, (e) A=0.98,B=0.20, and

(f) A=0.81 and B=0.20. The exact shapes of the simulated spectra match very well

with the experimental spectra for low input pump powers (2.1 W and 5.5 W), but

tend to lack the ”filled-in” character of the experimental spectra at higher powers

(6.7 W, 8.3 W, 12.7 W and 17.4 W).

3.4 Discussion

Hart et al. [28] postulated that strong candidates for the possible physical

sources of the phase fluctuations are stimulated Brillouin scattering, stimulated
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Raman scattering and fiber medium inhomogeneities. Brillouin scattering was elim-

inated as a source, since a backward propagating wave, which is a signature of

Brillouin scattering in optical fibers, was not observed in the experiments. We have

modeled stimulated Raman scattering [27, 37] for our system and have found no ev-

idence to support the hypothesis that it could be a possible source of the stochastic

phase fluctuations for fiber lengths up to 50 meters and pump power levels up to 5.5

Watts. A more detailed discussion of the Raman scattering simulations performed

is given in Chap. 3. Apart from these, quantum phase fluctuations are another well

known, though extremely weak, source of phase noise in optical fibers [8, 38].

Fiber medium inhomogeneities were identified as the major cause of the stochas-

tic phase fluctuations. These inhomogeneities can manifest themselves through

spatial and/or temporal fluctuations in the fiber parameters, namely, the linear

refractive index n0, the group velocity vg, the group velocity dispersion β(2) and

the nonlinearity γ [39]. Of these, the fluctuation in the linear refractive index was

found to be the only source of phase fluctuation that had a significant effect on

the dynamics. A relationship between the level of refractive index fluctuations and

the corresponding level of phase fluctuations has been arrived at. It is found that

refractive index fluctuations as small as σ2
n ∼ 10−17 m−1 can cause the desired phase

fluctuations. Possible sources of these refractive index fluctuations are discussed

below.

Consider the modified nonlinear Schrödinger equation (NLSE) which is stated

below, with the linear multiplicative noise term represented in terms of spatial and
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temporal fluctuations in the refractive index of the fiber.

∂U

∂z
+
iβ(2)

2T 2
0

∂2U

∂τ 2
+
αU

2
+ ik0δn(z, τ)U − iγP0|U |2U = 0, (3.14)

where δn(z, τ) is the spatial and temporal variation of the refractive index along the

fiber. It can be caused by temperature and density fluctuations in the fiber [40].

The thermodynamic estimate for ∆n is given by [40]

〈∆n2〉 =
−kTρ2

V 2

(
∂V

∂P

)
T

(
∂n

∂ρ

)2

T

+
kT 2

ρV Cv

(
∂n

∂T

)2

ρ

. (3.15)

This gives the mean-square index fluctuation in terms of the properties of the

material. It can be rewritten as

〈∆n2〉 =
Vρ + VT
V

= 〈∆n2〉ρ + 〈∆n2〉T . (3.16)

For a fiber of length z=1 m and radius r=2.82µm (Volume V=2.5 ×10−12 m3),

these have been calculated to be

〈∆n2〉ρ ∼ 10−21 ≡ 〈∆ρ2〉 ∼ 10−14kg
2

m6
,

〈∆n2〉T ∼ 10−23 ≡ 〈∆T 2〉 ∼ 10−12 ◦C2. (3.17)

It should be noted that 〈∆n2〉 ∝ (1/z) ⇒ δn ∝ (1/
√
z). The corresponding

phase fluctuation that this would lead to in the NLSE is given by δφ = k0δnz ∝
√
z,

which is equivalent to the prescription for incorporating phase fluctuations into the

stochastic NLSE model described in Sec. 2.3, namely, 〈∆φ2〉 = 6.7× 10−3z. Hart et

al. [28] used the same prescription and the same noise strength in their truncated-

ODE model. From this we can estimate the level of refractive index fluctuation that
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corresponds to the noise strength used in the simulations described in Sec. 3.3

〈∆n2〉 =
6.7× 10−3

k2
0

= 6.78× 10−17

≡ 〈∆T 2〉 ∼ 10−6 ◦C2 ≡ ∆T ∼ 10−3 ◦C (3.18)

The temperature coefficient of the refractive index of silica [40], (∂n/∂T )ρ ∼

10−5 ◦C−1. Thus even small spatio-temporal temperature fluctuations of ∼ 10−3 ◦C

are enough to cause the inferred level of refractive index fluctuations.

The refractive index fluctuations could also be due to inhomogeneities in the

density of the fiber material, frozen in at the time of manufacture of the fiber. The

simulations were averaged over ∼ 600 iterations to get a good estimate of the power

fluctuations in the sidebands. Initially, simulations were performed with a different

phase noise distribution for each iteration. Later, a particular (arbitrary) phase noise

distribution was selected and frozen for all the iterations. This did not reduce the

level of damping observed in the sideband trajectories provided that the strength of

the phase noise was kept the same, thus indicating that density fluctuations induced

during fiber manufacture could be a possible source. The phase noise was modeled

as δ-correlated in both space and time. A more realistic approach would be to use

correlated noise. Numerical methods to incorporate linear multiplicative correlated

noise into the NLSE have been developed by M.J. Werner et al. [32].

3.5 Conclusions

The role of stochasticity in the dynamical evolution of four-wave-mixing pro-

cesses in an optical fiber has been investigated. This research consisted of theoretical
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and numerical computations. It focuses on tracing the evolution of the sidebands,

generated through FWM, along a length of optical fiber. Detailed comparisons

were made with the experimental results of Hart et al. [28] and the agreement was

excellent. The present work uses numerical techniques that have much higher res-

olution and better efficiency, and it presents a theoretical basis for the role of the

stochasticity in the dynamics. The system is known to be governed by the nonlinear

Schrödinger equation (NLSE) to a very good approximation [8].

A powerful technique that can be used for simulations of the stochastic NLSE

is the Split-step Fourier Method (SSFM) [8]. An algorithm for the direct implemen-

tation of stochastic processes along the length of the fiber in the SSFM has been

developed. The advantages of this approach with respect to the coupled-ODE ap-

proach are that we can carry out simulations with much higher frequency and time

resolution without sacrificing computational efficiency.

The physical sources of these stochastic phase fluctuations are investigated

quantitatively and are identified to be due to fluctuations in the linear refractive

index of the fiber. Strong candidates for the causes of these refractive index fluctu-

ations are temperature fluctuations in the fiber medium caused by the fluctuating

temperature of the fiber environment, density fluctuations in the fiber medium frozen

into the fiber during manufacture, and intrinsic thermodynamic fluctuations in the

temperature and density of the fiber.

The experiments performed by Hart et al. [28] can be used to determine the

level of these refractive index fluctuations in commercial fibers. Results described

in Figs. 2 and 3 represent a destructive experiment that measures the sideband
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evolution with fiber length for a fixed input pump power, necessarily requiring the

fiber to be cut repeatedly. The level of refractive index fluctuations can be used as

a parameter in the simulations to best fit the experimental results. Alternatively,

Fig. 4 represents a non-destructive experiment that measures the sideband evolution

with input pump power for a fixed fiber length. These experiments are found to be

effective for estimating the refractive index fluctuations, as the dynamics is observed

to be sensitively dependent on the strength of the phase fluctuations.

87



Appendix A

Overview

The understanding of nonlinear processes in optical fibers is crucial towards

extending the capabilities of modern optical communication systems based on wave-

length division multiplexing (WDM), where each communication channel is repre-

sented by a unique wavelength. One of the nonlinear processes that limits the in-

formation carrying capacity of a WDM system is four-wave mixing (FWM), which

causes cross-talk between neighboring channels. This places a lower limit on the

wavelength separation between adjacent channels and an upper limit on the input

power in each channel. In this study, we describe a process by which the evolution

of FWM processes in an optical fiber can be used to estimate the inhomogeneities

in the fiber core material, in particular the fluctuations in the linear refractive index

of the fiber core.

Experiments measuring the evolution of FWM processes along a length of fiber

were carried out by Hart et al. [28] and are described in detail in Sec. 2.2. In this

experiment, two input pump waves at frequencies ω1 and ω2, interacted with each

other through the third-order nonlinearity of the fiber material to generate first-order

sidebands at frequencies ω3 = 2ω1 − ω2 and ω4 = 2ω2 − ω1. These waves further

interacted to produce second-order sidebands at ω5 = 2ω3 − ω4 and ω6 = 2ω4 − ω3.

Higher-order sidebands were also generated. The normalized power in the sideband
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at frequency ωm was represented by ρm. The evolution of the FWM processes was

characterized by the evolution of ρm(z) as a function of fiber length z.

In the present work, we make a quantitative comparison between these exper-

imental results and our numerical results based on efficient algorithms [8] to solve

the nonlinear Schrödinger equation (NLSE) that governs the system. The numeri-

cal model, its underlying assumptions and the results are described in Sec. 2.3. A

realistic description of a standard single mode optical fiber must take into account

the random phase perturbations a light wave undergoes while propagating through

it, without disturbing the underlying conservative properties of the system. The

NLSE needs to be suitably modified in order to incorporate the stochastic nature

of the propagation. In order to preserve the conservative properties of the system,

the stochastic terms in the NLSE must necessarily be multiplicative in nature as an

additive term acts as a source or a sink. An algorithm that achieves this with linear,

Gaussian, δ-correlated noise is outlined in Sec. 2.3. This algorithm preserves the un-

conditional stability of the system. At the same time, care is taken to transform the

stochastic NLSE from its original Ito representation [29] to the computationally fea-

sible Stratanovich representation [30] by compensating for the spurious linear drift

that results from integrating such stochastic differential equations [31, 32, 33, 34].

The dominant sources of phase noise are discussed in Sec. 2.4.

Conclusions on the relevance of the experiments of Hart et al. [28] and the

stochastic modeling presented here are summarized in Sec. 2.5.
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A.1 Experimental and Computational Background

In this work, we focus on tracing the evolution of the sidebands, generated

through FWM, along a length of optical fiber. The FWM spectral evolution along

50 m of fiber for two input pump power regimes (2.1 W and 5.5 W) was investigated

[28]. In the 2.1 W case, the sideband evolution followed a damped sinusoid along the

length of the fiber. The experiments also found that the two first-order sidebands

(ρ3-blueshifted and ρ4-redshifted from the two pumps) had different evolutions along

the fiber (with different spatial wavelengths). For the 5.5 W case, the evolution of

both first- and second-order sidebands was measured. The damping in the first-

order sidebands (ρ3 and ρ4) occured faster than in the 2.1 W case. Experiments

probing the dependence of the sideband power on the input power (ranging from

2 W to 17 W) were also performed at a fixed output length of 50 m of the fiber.

At the same fiber length, the optical spectra for input powers ranging from 2 W to

17 W were also recorded [28]. The spectral envelopes were observed to fit well to

a hyperbolic secant function and the fit parameters were recorded. Measurements

with a high-resolution wavemeter showed that one of the two pumps consisted of

two very closely spaced longitudinal modes (∆ν ∼ 0.5 GHz) which were not resolved

by the spectrometer used to record the FWM spectra. Inclusion of this multimode

nature of the pump input in their model was found to alter the sideband dynamics

dramatically and partly explained the asymmetry between the blue-shifted and red-

shifted sidebands though it did not account for the damping in the sidebands. This

was accounted for by adding weak phase fluctuations to the waves as they propagated
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along the fiber [28]. The physical source of these phase fluctuations was not known

at that time. However, the inclusion of the phase fluctuations into the model gave

excellent qualitative and quantitative agreement with experiment. Their model

involved integration of a system of coupled ODEs derived from the NLSE [35] by

a process of truncation that retained only the leading frequency components (the

pumps and the first- and second-order sidebands), a process justified by the fact that

the input pump waves are well approximated by a combination of monochromatic

waves. Their final numerical results are based on simulations using the truncated-

ODE model with Langevin noise terms representing phase fluctuations in the fiber.

Another physical source of stochasticity in their experiment was the inherent power

fluctuation in the lasers used as the input pumps. The level of fluctuations (5-20%)

was measured and incorporated appropriately into their model through stochastic

initial conditions. This explained the evolution of the level of observed fluctuations

in the sideband trajectories although it was found to be inadequate by itself, to

account for the damping of the trajectories. They found that all three physical

characteristics mentioned above, namely the multimode nature of the pump input,

the stochastic phase fluctuations along the length of the fiber, and the stochastic

initial power fluctuations were crucial to explaining the different features of the

experimental measurements [28].
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A.2 Stochastic NLSE Model

In the present work, we have developed and implemented an unconditionally

stable scheme for integrating the NLSE that successfully incorporates phase noise

into the SSFM. Thus, we are now in a position to harness the high frequency /

time resolution of the SSFM together with its efficient convergence properties. Due

to these advances, we are now able to do simulations with much higher frequency

resolution (60 MHz as compared to 300 GHz in the ODE model). This high res-

olution, coupled with an appropriate convolution scheme, enables us to compare

these simulated spectra with the composite spectra observed by the spectrometers

which had a resolution of ∼ 60 GHz. This was not possible with the truncated ODE

model as the resolution of the simulated spectra in that case was ∼ 300 GHz. For

exactly the same levels of phase fluctuations, and initial condition fluctuations as

used in Ref. [28], comparisons for the present NLSE model with the experimental

sideband evolution functions ρi(z) show excellent quantitative agreement. These

results, along with the algorithms employed, are described in detail in this section.

We have identified linear refractive index fluctuations along the fiber length to be

a strong candidate for a physical source of the stochastic phase fluctuations. A

comparison between the various possible sources is given in Sec. 2.4.

Under the assumption that the electric field of the light in the fiber has a slowly

varying envelope A(z, τ), and that the fiber medium has an instantaneous nonlinear

response, the system is well described by the nonlinear Schrödinger equation (NLSE)
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with a linear multiplicative stochastic term

∂U

∂z
+
iβ(2)

2T 2
0

∂2U

∂τ 2
+
αU

2
+ iΓ(z, τ)U − iγP0|U |2U = 0. (A.1)

Z is distance along the length of the fiber, U(z, τ) = A(z, τ)/
√
P0 is the complex

electric field envelope A(z, τ) normalized to the absolute amplitude of the field
√
P0,

P0 is the total power in the fiber, τ is time normalized to a convenient time scale

T0(∼ 1 ns) measured in a reference frame moving with the group velocity of the

pulse [τ = (t − z/vg)/T0]. The simulations are carried out for exactly the same

physical parameters as the experiments and simulations reported by Hart et al.

[28], i.e., β(2) = 55 (ps)2/km, is the group velocity dispersion of the fiber at the

operating wavelength λ0 ∼ 632 nm (k0 ∼ 107m−1). A loss of ∼ 6 dB/km gives α =

0.0014 m−1 as the loss in the fiber at this wavelength. The nonlinearity coefficient

γ = 0.019W−1m−1 is given by

γ =
ωaven

I
2

cAeff
, (A.2)

where Aeff is the effective core area of the fiber, nI2 is the Kerr coefficient for the

intensity-dependent refractive index, and ωave is the average angular frequency of

the wave envelope. Γ(z, τ) is a linear multiplicative phase noise field. In this study

the noise field is assumed to be δ-correlated in both space and time. The evolution

of the FWM dynamics is found to be sensitive to the strength of this noise field. It

can be physically interpreted as phase noise arising due to fluctuations in the linear

refractive index of the fiber medium. A detailed discussion of its physical origin is

given in Sec. 2.4.

The system was simulated using the Split-Step Fourier Method (SSFM) [8].

93



An algorithm for appropriately incorporating stochastic phase fluctuations along the

length of the fiber in the SSFM was developed and is summarized below.

The NLSE is composed of linear and nonlinear terms, and can be written in

operator form as

∂U

∂z
= (D̂ + Ŝ + N̂)U

D̂ =
−iβ(2)

2T 2
0

∂2

∂τ 2
− α

2

Ŝ = iΓ(z, τ)

N̂ = iγP0|U |2, (A.3)

where D̂, Ŝ and N̂ are linear (dispersive), nonlinear and stochastic operators, re-

spectively. It has an exact solution for infinitesimal ∆z given by -

U(z + ∆z, τ) = exp[∆z(D̂ + Ŝ + N̂)]U(z, τ), (A.4)

which can be approximated by

U(z + ∆z, τ) ≈ exp[∆zD̂]exp[∆zŜ]exp[∆zN̂ ]U(z, τ). (A.5)

The execution of exp[∆zN̂ ] is carried out in τ -space:

B1(z, τ) = exp[∆zN̂ ]U(z, τ). (A.6)

The execution of exp[∆zŜ] and exp[∆zD̂] is carried out in ω-space.

In particular, the stochastic phase fluctuations are introduced by modifying

the phase φj of each frequency component ωj of the complex field according to

B2(z, ω) = F [B1(z, τ)]

B3(z, ωj) = exp[iδφ(z, ωj)]B2(z, ωj), (A.7)
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where F represents the Fourier transform operation.

This process only modifies the phase of each complex frequency component,

leaving its absolute value unchanged. Thus the algorithm conserves the total power

and the unconditional stability of the system.

The stochastic phase fluctuations δφ(z, ωj) are taken to be δ-correlated in

frequency as well as spatially along the fiber length. The Box-Muller algorithm [36]

was used to generate Gaussian random deviates from computer-generated uniform

random deviates r1j and r2j at each spatial step and for each frequency component

ωj. The fluctuations are given by

δφ(z, ωj) =
√
−2σ2

φ∆zln(r1j)cos(2πr2j). (A.8)

This is followed by the execution of exp[∆zD̂], which is also carried out in

Fourier space, followed by the inverse transform

U(z + ∆z, τ) = F−1[exp[∆zD̂(iω)]B3(z, ω)]. (A.9)

D̂(iω) is obtained by replacing (∂/∂τ) by iω.

The basic form of the initial complex wave envelope function is

U(0, τ) = exp

(
− τ 2

2τ 2
p

)
exp

(
iΩτ

2

)
+

exp
(
− iΩτ

2

)
 , (A.10)

where τp is the pulse width Tp =5 ns FWHM, normalized to the time scale T0,

Ω=366 GHz is the frequency detuning between the two laser sources normalized to

a frequency scale Ω0 = 62.5 MHz. Figure A.1(a) shows a plot of this pulse |U(0, τ)|2.

The overall Gaussian envelope has an FWHM of 5 ns, the closely spaced dark lines
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Figure A.1: Multimode pulse input to the NLSE: (a) input pulse in time
domain and (b) input spectrum.
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are due to the 366 GHz (∼3 ps) beating between the two input pump frequencies.

The 2 ns modulations on the pulse are due to the 0.5 GHz mode-structure in the

blue-shifted pump wave. Figure A.1(b) shows the input spectrum of this pulse which

consists of two highly monochromatic pump waves with a detuning of Ω=366 GHz.

The spectrum of the blue-shifted pump, upon magnification, is seen to be composed

of two very closely spaced peaks, with a separation of ∆ν=0.5 GHz. Hart et al. [28]

did not use pulsed wave functions in their NLSE simulations as the size of the FFT

required to do so made it computationally prohibitive at that time. The size of the

FFT was chosen such that it would accommodate a time span of 16 ns in order to go

sufficiently far into the wings on the Gaussian pulse; and a frequency span of 16 THz

in order to accommodate all the sidebands generated and prevent spurious effects

due to the reflection boundary conditions implicit in the SSFM algorithm. These

considerations dictated the size of the FFT to be ≥(16 THz)·(16 ns) = 256000. The

nearest power of 2 is 218 = 262144, which has been used throughout the present work.

The incorporation of the pulsed nature of the light was found to be necessary in

explaining the dynamics. From the perspective of the coupled amplitude equations

used by Hart et al. [28], the present model is equivalent to a coupled-ODE model

with 218 coupled ODEs.

Upon incorporation of the multimode nature of the blue input pump laser

source and the stochastic fluctuations in the initial power in the lasers, the initial
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Figure A.2: Effects of inclusion of the multimode nature (∆ν = 0.5 GHz)
of the blue-shifted input pump laser on the 1st order sideband evolution
as a function of fiber length for P0 = 2.1 W. Dashed curves represent sim-
ulations without the multimode nature and solid curves represent simu-
lations with the multimode nature. Ω = 366 GHz, γ = 0.019 W−1 m−1,
and β(2) = 55 ps2/km (a) power in the blue-shifted sideband, (b) power
in the red-shifted sideband.
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Figure A.3: Effects of inclusion of the multimode nature (∆ν = 0.5 GHz)
of the blue-shifted input pump laser on the 1st order sideband evolution
as a function of fiber length for P0 = 5.5 W. Dashed curves represent sim-
ulations without the multimode nature and solid curves represent simu-
lations with the multimode nature. Ω = 366 GHz, γ = 0.019 W−1 m−1,
and β(2) = 55 ps2/km (a) power in the first-order blue-shifted sideband,
(b) power in the first-order red-shifted sideband, (c) power in the second-
order blue-shifted sideband, (d) power in the second-order red-shifted
sideband.
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Figure A.4: Effects of inclusion of the pulsed nature (5 ns FWHM) of the
input pump laser light on the first-order sideband evolution as a function
of fiber length for P0 = 2.1 W. Dashed curves represent cw simulations
and solid curves represent pulsed simulations. Ω = 366 GHz, ∆ν = 0.5,
γ = 0.019 W−1m−1, and β(2) = 55 ps2/,km (a) power in the blue-shifted
sideband, (b) power in the red-shifted sideband.
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Figure A.5: Effects of inclusion of the pulsed nature (5 ns FWHM) of
the input pump laser on the first- and second-order sideband evolution
as a function of fiber length for P0 = 5.5 W. Dashed curves represent cw
simulations and solid curves represent pulsed simulations. Ω = 366 GHz,
∆ν = 0.5, γ = 0.019 W−1m−1, and β(2) = 55 ps2/,km (a) power in the
first-order blue-shifted sideband, (b) power in the first-order red-shifted
sideband, (c) power in the second-order blue-shifted sideband, (d) power
in the second-order red-shifted sideband.
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wave function takes the form

U(0, τ) = exp

(
− τ 2

2τ 2
p

)


√
1+δρ1

2

 exp
(
i(Ω+∆ν)τ

2

)
+

exp
(
i(Ω−∆ν)τ

2

)


+
√

1 + δρ2exp
(
− iΩτ

2

)


. (A.11)

∆ν = 0.5 GHz is the frequency separation between the two longitudinal modes in

the blue-shifted pump. δρ1 and δρ2 are Gaussian random deviates (generated using

the Box-Muller algorithm [36]) that represent the initial power fluctuations in each

of the pump laser sources. Their standard deviations were taken to be, σρ1 = 0.2,

σρ2 = 0.11 for simulations from 0 m to 20 m, σρ1 = 0.12, σρ2 = 0.05 for simulations

from 20 m to 50 m along the length of the fiber. This is exactly the same prescription

used by Hart et al. [28] in their simulations and is dictated by their experimental

measurements of the fluctuations in the pump laser intensities.

At this point it is worth noting the effects of the inclusion of two attributes of

the input laser light, namely, the multimode nature of the blue-shifted pump, and

the pulsed nature of the input light (assumed to be cw in the simulations reported

by Hart et al. [28]).

Figure A.2 shows a comparison between simulations with (solid curves) and

without (dashed curves) the multimode nature for an input pump power of 2.1

Watts. The simulations with the mode structure show the asymmetry between

the blue- and red-shifted sideband evolution, in particular, the difference in spatial

wavelength between the two, and a non-return to zero nature of the evolution, as

observed in the experimental data (black dots with error bars). These features are
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absent in the simulations without mode-structure. ρ3 and ρ4 stands for the first order

blue- and red-shifted sidebands respectively. Figure 2.3 shows the corresponding

comparison for the case of 5.5 Watts of input pump power. Here, too, the simulations

incorporating the multimode nature of the blue-shifted pump (solid curves) are seen

to be an improvement over those not incorporating it (dashed curves). A feature

of the experimental data (black dots with errorbars) is that for the ρ3 sideband,

the initial part of the evolution involves a peak followed by a shoulder, while for

the ρ4 sideband, the initial part of the evolution involves a shoulder followed by a

peak. This feature, too, is seen to occur as a result of the inclusion of the multimode

nature of the blue-shifted pump.

The effect of inclusion of the pulsed nature of the input beam is seen in Fig.

A.4 (for the 2.1 Watt case) and Fig. A.5 (for the 5.5 Watt case). The solid dashes

represent simulations for a cw input beam and the solid curves represent those for a

pulsed input beam. The incorporation of the pulsed nature clearly results in damp-

ing of the sideband trajectories which are seen to come closer to the experimental

data [28] (black dots with error bars).

Use of the FFT algorithm makes evaluation relatively fast compared to other

finite-difference schemes. The computational error is O(∆z2), thus the solution

converges with decreasing spatial step-size ∆z.

The simulations were tested for the conservation of total power along the fiber

length (by setting the loss α to zero) and for the conservation of asymmetry [35, 28]
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given by

C(Z) =
∞∑
i=1

(2i− 1)[ρ2i−1(Z)− ρ2i(Z)]. (A.12)

A clearer picture of the evolution of the sidebands is obtained by plotting both

the power in the sidebands and their standard deviations as a function of length

along the fiber. Figures A.6(a) and A.6(b) show a comparison between simulation

and experiment of the evolution of the first-order blue-shifted (ρ3) and red-shifted

(ρ4) sidebands, respectively, for an input power of 2.1 W. The dashed curves rep-

resent NLSE simulations which include the stochastic nature of the input powers

of the pump lasers but exclude the stochastic phase fluctuations added along the

length of the fiber, an attribute which is included in the simulations represented by

the solid curves. The black dots with error bars represent the experimental data.

The measured sideband power, normalized to the total power in the fiber, is pe-

riodic in length but appears to be damping to a constant value. The measured

data also show a clear difference between the spatial wavelengths of oscillation of

the blue-shifted (ρ3) and red-shifted (ρ4) sidebands trajectories, respectively. Both

these features are captured well by both the simulations. Figures A.6(c) and A.6(d)

compare experimental and simulated measures of the evolution of the standard de-

viation in the sideband power along the fiber length. It is clearly observed that

simulations with phase noise added to the light field along the length of the fiber

(solid curves) are closer to the experimental data as compared to those that exclude

this feature (dashed curves). This indicates the instrumental nature of the phase

fluctuations in explaining key features of the dynamics.
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Figure A.6: Comparison between the experimental measurements
[28](black), the random initial condition NLSE model excluding phase
noise (dashed curves) and the stochastic phase noise NLSE model (solid
curves) showing the first-order sideband evolution as a function of fiber
length for P0 = 2.1 W, Ω = 366 GHz, ∆ν = 0.5 GHz,γ = 0.019 W−1m−1,
and β(2) = 55ps2/km: dynamical evolution of the: (a) power in the blue-
shifted sideband, (b) power in the red-shifted sideband, (c) fluctuations
in the blue-shifted sideband, (d) fluctuations in the red-shifted sideband.
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The apparent damping of the periodic sideband trajectory is seen more dra-

matically in Figs. A.7(a) and A.7(b), which show the evolution of the first-order

sideband power along the fiber for an input power of 5.5 W. The two first-order

sidebands evolve differently. They appear to damp to a constant value at a faster

rate than for the case with an input pump power of 2.1 W. Here again, NLSE sim-

ulations that incorporate phase noise along the length of the fiber (solid curves)

are much more successful in accurately capturing the dynamical features of the

system than NLSE simulations that do not take this feature into account (dashed

curves). Figures A.7(c) and A.7(d) show a comparison between the simulated and

measured standard deviations. Comparisons for the second-order blue-shifted (ρ5)

and red-shifted (ρ6) sidebands, respectively, are shown in Figs. A.7(e) and A.7(f).

The observed dynamical evolution of the sidebands is found to depend sensi-

tively on the strength of the stochastic phase fluctuations. Yet, best agreement with

the experimental results of Hart et al. [28] is achieved with exactly the same noise

strength σ2
φ as used in their truncated ODE model, namely, σ2

φ = 0.0067 m−1. They

report that including phase noise in their FWM calculations resulted in a spurious

linear drift in the trajectories for the sideband power with length. To remove this

artifact of the computations, they added a linear loss to their coupled ODEs. They

set the loss coefficient α = 0.0046 m−1 by finding the value that removed this in-

creasing slope. We have observed exactly the same secular growth phenomenon for

a wide range of the noise strength σ2
φ and have arrived at an empirical prescription

for α namely, α ∼ σ2
φ, where σ2

φ is the variance of the added phase noise. This

indicates the general nature of dynamics resulting from the addition of stochastic,
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Figure A.7: This figure caption is indented and single-spaced. Compar-
ison between the experimental measurements [28] (black), the random
initial condition NLSE model excluding phase noise (dashed curves) and
the stochastic phase noise NLSE model (solid curves) showing the first-
and second-order sideband evolution as a function of fiber length for
P0 = 5.5 W, Ω = 366 GHz, ∆ν = 0.5 GHz, γ = 0.019 W−1m−1, and
β(2) = 55 ps2/km: dynamical evolution of the: (a) power in the first-
order blue-shifted sideband, (b) power in the first-order red-shifted side-
band, (c) fluctuations in the first-order blue-shifted sideband, (d) fluc-
tuations in the first-order red-shifted sideband, (e) power in the second-
order blue-shifted sideband, (f) power in the second-order red-shifted
sideband.
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δ-correlated phase fluctuations to systems governed by nonlinear partial differential

equations [31].

It is remarkable that the strength of the phase noise required is the same in

both the 2.1 W and the 5.5 W cases. Further, it is worth noting that exactly the

same noise strength was used by Hart et al. [28], the difference being that they

introduced phase noise only in the pump frequencies, whereas we have introduced

it in all the Fourier modes (∼ 218). As a confirmation of this result, they also

performed experiments and numerical simulations examining the sideband power

dependence on the input power at a fixed length of 50.4 m of the same fiber. We

have repeated these simulations with the stochastic NLSE model and the results are

shown in Figs. 2.8(a) (blue-shifted sideband) and 2.8(b) (red-shifted sideband). The

experimental measurements of the sideband powers are represented by filled squares

and the results of numerical simulations are represented by triangles (without phase

noise) and by circles (with phase noise). The simulations are seen to follow the

general trend seen in the experiments. As the pump power is increased, the triangles

(without phase noise) start to disagree with experiment, whereas the circles (with

phase noise) are much closer to experiment. The phase noise strength used in these

simulations was exactly the same as that used in the simulations depicted in Figs. A.6

and A.7. The agreement between the phase noise simulations and the experimental

data was (once again) highly sensitive to the noise strength. Since this experiment

(unlike those shown in Figs. A.2 - A.7) is non-destructive, it can be used to deduce

the strength of phase noise processes in a given optical fiber. It will be shown in

Sec. 2.4 that a likely cause of the phase noise is fluctuation in the linear refractive
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index of the fiber. The noise strength deduced from the present computational study

corresponds to a refractive index inhomogeneity of 〈∆n2〉 ∼ 10−16.

Till now the comparisons between our simulations of the full NLSE and the

truncated ODE model give basically the same results, although with much better

agreement with experiment. However, the full NLSE can also provide a detailed

comparison with the experimental spectra. This was not available from the trun-

cated ODE model. The simulations reported in this work were carried out with a

very high frequency and time resolution in order to incorporate the fact that the

input light was not cw, but was composed of ∼ 5 ns long pulses; and that the number

of sidebands generated required the frequency spread of the FFT to be ∼ 16 THz,

while resolving a longitudinal mode-structure of ∆ν ∼ 0.5 GHz. The spectral reso-

lution used was ∼ 0.05 GHz, whereas the spectrometer used to observe the spectra

had a resolution 1000 times larger (∼ 50 GHz). To account for this difference, the

simulated spectra were first convolved with a Gaussian of unit peak and 62 GHz

FWHM, before they were compared with the observed spectra.

Figures A.9(a) and A.9(b) show three-dimensional plots of the average exper-

imental FWM output spectrum along the length of the fiber for input pump powers

of 2.1 W and 5.5 W, respectively (courtesy Hart et al. [28]). The vertical axis repre-

sents the intensity, normalized to the peak power in one of the input pumps, plotted

on a logarithmic scale. The pump frequencies are centered on +/ − Ω/2 and the

fiber length is increasing into the page. Figures 9(c) and 9(d) show the correspond-

ing comparisons based on simulations using the stochastic-NLSE model. The basic

features of the spectral evolution are captured by the simulations.
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Figure A.8: Comparison between the experimental measurements (filled
squares), simulations without stochastic phase fluctuations (open trian-
gles) and with stochastic phase fluctuations (open circles) of the first-
order sideband power versus pump input power for L=50.39 m, and
Ω = 366 GHz: power in the (a) blue-shifted sideband and (b) red-shifted
sideband.
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Figure A.9: Evolution of the FWM spectrum along the fiber
(a) P=2.1 W, experiment, (b) P=5.5 W, experiment, (c) P=2.1 W,
stochastic-NLSE model, (d) P=5.5 W, stochastic-NLSE model.

Figure A.10: Experimental FWM output spectrum (solid line), con-
volved spectra from simulations of the stochastic NLSE model (dashed
line), and hyperbolic secant envelope fit (dotted line) for pump input
powers P0 of (a) 2.1 W, (b) 5.5 W, (c) 6.7 W, (d) 8.3 W, (e) 12.7 W,
(f) 17.4 W, fiber length L= 50.39 m, Ω = 366 GHz, ∆ν = 0.5 GHz,
γ = 0.019 W−1m−1, and β(2) = 55 ps2/km.
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Hart et al. [28] also documented the experimentally observed FWM output

spectra for a fixed fiber length of 50.39 meters for 6 different input pump powers.

They state the coefficients A and B of the hyperbolic secant envelopes that best fit

the output spectra which are given by

f(ω) = Asech(Bω), (A.13)

where A and B are the experimental fit parameters.

The hyperbolic secant parameters A and B, that best fit the simulated spectra

are exactly the same as those that best fit the experimental spectra [28] for all the

6 cases of input power considered. Figure 2.10 shows an overlap of the simulated

spectra (dashed line), with the experimental spectra (solid line) and the experimen-

tal hyperbolic secant envelope (dotted line) for 6 different pump powers, namely, (a)

2.1 W, (b) 5.5 W, (c) 6.7 W, (d) 8.3 W, (e) 12.7 W, (f) 17.4 W. The hyperbolic secant

parameters for each of these pump powers are (a) A=3.85 and B=0.36, (b) A=2.26

and B=0.27, (c) A=1.81, B=0.25, (d) A=1.56 and B=0.23, (e) A=0.98,B=0.20, and

(f) A=0.81 and B=0.20. The exact shapes of the simulated spectra match very well

with the experimental spectra for low input pump powers (2.1 W and 5.5 W), but

tend to lack the ”filled-in” character of the experimental spectra at higher powers

(6.7 W, 8.3 W, 12.7 W and 17.4 W).

A.3 Discussion

Hart et al. [28] postulated that strong candidates for the possible physical

sources of the phase fluctuations are stimulated Brillouin scattering, stimulated
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Raman scattering and fiber medium inhomogeneities. Brillouin scattering was elim-

inated as a source, since a backward propagating wave, which is a signature of

Brillouin scattering in optical fibers, was not observed in the experiments. We have

modeled stimulated Raman scattering [27, 37] for our system and have found no ev-

idence to support the hypothesis that it could be a possible source of the stochastic

phase fluctuations for fiber lengths up to 50 meters and pump power levels up to 5.5

Watts. A more detailed discussion of the Raman scattering simulations performed

is given in Chap. 3. Apart from these, quantum phase fluctuations are another well

known, though extremely weak, source of phase noise in optical fibers [8, 38].

Fiber medium inhomogeneities were identified as the major cause of the stochas-

tic phase fluctuations. These inhomogeneities can manifest themselves through

spatial and/or temporal fluctuations in the fiber parameters, namely, the linear

refractive index n0, the group velocity vg, the group velocity dispersion β(2) and

the nonlinearity γ [39]. Of these, the fluctuation in the linear refractive index was

found to be the only source of phase fluctuation that had a significant effect on

the dynamics. A relationship between the level of refractive index fluctuations and

the corresponding level of phase fluctuations has been arrived at. It is found that

refractive index fluctuations as small as σ2
n ∼ 10−17 m−1 can cause the desired phase

fluctuations. Possible sources of these refractive index fluctuations are discussed

below.

Consider the modified nonlinear Schrödinger equation (NLSE) which is stated

below, with the linear multiplicative noise term represented in terms of spatial and

113



temporal fluctuations in the refractive index of the fiber.

∂U

∂z
+
iβ(2)

2T 2
0

∂2U

∂τ 2
+
αU

2
+ ik0δn(z, τ)U − iγP0|U |2U = 0, (A.14)

where δn(z, τ) is the spatial and temporal variation of the refractive index along the

fiber. It can be caused by temperature and density fluctuations in the fiber [40].

The thermodynamic estimate for ∆n is given by [40]

〈∆n2〉 =
−kTρ2

V 2

(
∂V

∂P

)
T

(
∂n

∂ρ

)2

T

+
kT 2

ρV Cv

(
∂n

∂T

)2

ρ

. (A.15)

This gives the mean-square index fluctuation in terms of the properties of the

material. It can be rewritten as

〈∆n2〉 =
Vρ + VT
V

= 〈∆n2〉ρ + 〈∆n2〉T . (A.16)

For a fiber of length z=1 m and radius r=2.82µm (Volume V=2.5 ×10−12 m3),

these have been calculated to be

〈∆n2〉ρ ∼ 10−21 ≡ 〈∆ρ2〉 ∼ 10−14kg
2

m6
,

〈∆n2〉T ∼ 10−23 ≡ 〈∆T 2〉 ∼ 10−12 ◦C2. (A.17)

It should be noted that 〈∆n2〉 ∝ (1/z) ⇒ δn ∝ (1/
√
z). The corresponding

phase fluctuation that this would lead to in the NLSE is given by δφ = k0δnz ∝
√
z,

which is equivalent to the prescription for incorporating phase fluctuations into the

stochastic NLSE model described in Sec. 2.3, namely, 〈∆φ2〉 = 6.7× 10−3z. Hart et

al. [28] used the same prescription and the same noise strength in their truncated-

ODE model. From this we can estimate the level of refractive index fluctuation that
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corresponds to the noise strength used in the simulations described in Sec. 2.3

〈∆n2〉 =
6.7× 10−3

k2
0

= 6.78× 10−17

≡ 〈∆T 2〉 ∼ 10−6 ◦C2 ≡ ∆T ∼ 10−3 ◦C (A.18)

The temperature coefficient of the refractive index of silica [40], (∂n/∂T )ρ ∼

10−5 ◦C−1. Thus even small spatio-temporal temperature fluctuations of ∼ 10−3 ◦C

are enough to cause the inferred level of refractive index fluctuations.

The refractive index fluctuations could also be due to inhomogeneities in the

density of the fiber material, frozen in at the time of manufacture of the fiber. The

simulations were averaged over ∼ 600 iterations to get a good estimate of the power

fluctuations in the sidebands. Initially, simulations were performed with a different

phase noise distribution for each iteration. Later, a particular (arbitrary) phase noise

distribution was selected and frozen for all the iterations. This did not reduce the

level of damping observed in the sideband trajectories provided that the strength of

the phase noise was kept the same, thus indicating that density fluctuations induced

during fiber manufacture could be a possible source. The phase noise was modeled

as δ-correlated in both space and time. A more realistic approach would be to use

correlated noise. Numerical methods to incorporate linear multiplicative correlated

noise into the NLSE have been developed by M.J. Werner et al. [32].

A.4 Conclusions

The role of stochasticity in the dynamical evolution of four-wave-mixing pro-

cesses in an optical fiber has been investigated. This research consisted of theoretical
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and numerical computations. It focuses on tracing the evolution of the sidebands,

generated through FWM, along a length of optical fiber. Detailed comparisons

were made with the experimental results of Hart et al. [28] and the agreement was

excellent. The present work uses numerical techniques that have much higher res-

olution and better efficiency, and it presents a theoretical basis for the role of the

stochasticity in the dynamics. The system is known to be governed by the nonlinear

Schrödinger equation (NLSE) to a very good approximation [8].

A powerful technique that can be used for simulations of the stochastic NLSE

is the Split-step Fourier Method (SSFM) [8]. An algorithm for the direct implemen-

tation of stochastic processes along the length of the fiber in the SSFM has been

developed. The advantages of this approach with respect to the coupled-ODE ap-

proach are that we can carry out simulations with much higher frequency and time

resolution without sacrificing computational efficiency.

The physical sources of these stochastic phase fluctuations are investigated

quantitatively and are identified to be due to fluctuations in the linear refractive

index of the fiber. Strong candidates for the causes of these refractive index fluctu-

ations are temperature fluctuations in the fiber medium caused by the fluctuating

temperature of the fiber environment, density fluctuations in the fiber medium frozen

into the fiber during manufacture, and intrinsic thermodynamic fluctuations in the

temperature and density of the fiber.

The experiments performed by Hart et al. [28] can be used to determine the

level of these refractive index fluctuations in commercial fibers. Results described

in Figs. 2 and 3 represent a destructive experiment that measures the sideband
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evolution with fiber length for a fixed input pump power, necessarily requiring the

fiber to be cut repeatedly. The level of refractive index fluctuations can be used as

a parameter in the simulations to best fit the experimental results. Alternatively,

Fig. 4 represents a non-destructive experiment that measures the sideband evolution

with input pump power for a fixed fiber length. These experiments are found to be

effective for estimating the refractive index fluctuations, as the dynamics is observed

to be sensitively dependent on the strength of the phase fluctuations.
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Appendix B

Overview

The understanding of nonlinear processes in optical fibers is crucial towards

extending the capabilities of modern optical communication systems based on wave-

length division multiplexing (WDM), where each communication channel is repre-

sented by a unique wavelength. One of the nonlinear processes that limits the in-

formation carrying capacity of a WDM system is four-wave mixing (FWM), which

causes cross-talk between neighboring channels. This places a lower limit on the

wavelength separation between adjacent channels and an upper limit on the input

power in each channel. In this study, we describe a process by which the evolution

of FWM processes in an optical fiber can be used to estimate the inhomogeneities

in the fiber core material, in particular the fluctuations in the linear refractive index

of the fiber core.

Experiments measuring the evolution of FWM processes along a length of fiber

were carried out by Hart et al. [28] and are described in detail in Sec. 2.2. In this

experiment, two input pump waves at frequencies ω1 and ω2, interacted with each

other through the third-order nonlinearity of the fiber material to generate first-order

sidebands at frequencies ω3 = 2ω1 − ω2 and ω4 = 2ω2 − ω1. These waves further

interacted to produce second-order sidebands at ω5 = 2ω3 − ω4 and ω6 = 2ω4 − ω3.

Higher-order sidebands were also generated. The normalized power in the sideband
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at frequency ωm was represented by ρm. The evolution of the FWM processes was

characterized by the evolution of ρm(z) as a function of fiber length z.

In the present work, we make a quantitative comparison between these exper-

imental results and our numerical results based on efficient algorithms [8] to solve

the nonlinear Schrödinger equation (NLSE) that governs the system. The numeri-

cal model, its underlying assumptions and the results are described in Sec. B.3. A

realistic description of a standard single mode optical fiber must take into account

the random phase perturbations a light wave undergoes while propagating through

it, without disturbing the underlying conservative properties of the system. The

NLSE needs to be suitably modified in order to incorporate the stochastic nature

of the propagation. In order to preserve the conservative properties of the system,

the stochastic terms in the NLSE must necessarily be multiplicative in nature as an

additive term acts as a source or a sink. An algorithm that achieves this with linear,

Gaussian, δ-correlated noise is outlined in Sec. B.3. This algorithm preserves the un-

conditional stability of the system. At the same time, care is taken to transform the

stochastic NLSE from its original Ito representation [29] to the computationally fea-

sible Stratanovich representation [30] by compensating for the spurious linear drift

that results from integrating such stochastic differential equations [31, 32, 33, 34].

The dominant sources of phase noise are discussed in Sec. B.4.

Conclusions on the relevance of the experiments of Hart et al. [28] and the

stochastic modeling presented here are summarized in Sec. B.5.
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B.1 Experimental and Computational Background

In this work, we focus on tracing the evolution of the sidebands, generated

through FWM, along a length of optical fiber. The FWM spectral evolution along

50 m of fiber for two input pump power regimes (2.1 W and 5.5 W) was investigated

[28]. In the 2.1 W case, the sideband evolution followed a damped sinusoid along the

length of the fiber. The experiments also found that the two first-order sidebands

(ρ3-blueshifted and ρ4-redshifted from the two pumps) had different evolutions along

the fiber (with different spatial wavelengths). For the 5.5 W case, the evolution of

both first- and second-order sidebands was measured. The damping in the first-

order sidebands (ρ3 and ρ4) occured faster than in the 2.1 W case. Experiments

probing the dependence of the sideband power on the input power (ranging from

2 W to 17 W) were also performed at a fixed output length of 50 m of the fiber.

At the same fiber length, the optical spectra for input powers ranging from 2 W to

17 W were also recorded [28]. The spectral envelopes were observed to fit well to

a hyperbolic secant function and the fit parameters were recorded. Measurements

with a high-resolution wavemeter showed that one of the two pumps consisted of

two very closely spaced longitudinal modes (∆ν ∼ 0.5 GHz) which were not resolved

by the spectrometer used to record the FWM spectra. Inclusion of this multimode

nature of the pump input in their model was found to alter the sideband dynamics

dramatically and partly explained the asymmetry between the blue-shifted and red-

shifted sidebands though it did not account for the damping in the sidebands. This

was accounted for by adding weak phase fluctuations to the waves as they propagated
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along the fiber [28]. The physical source of these phase fluctuations was not known

at that time. However, the inclusion of the phase fluctuations into the model gave

excellent qualitative and quantitative agreement with experiment. Their model

involved integration of a system of coupled ODEs derived from the NLSE [35] by

a process of truncation that retained only the leading frequency components (the

pumps and the first- and second-order sidebands), a process justified by the fact that

the input pump waves are well approximated by a combination of monochromatic

waves. Their final numerical results are based on simulations using the truncated-

ODE model with Langevin noise terms representing phase fluctuations in the fiber.

Another physical source of stochasticity in their experiment was the inherent power

fluctuation in the lasers used as the input pumps. The level of fluctuations (5-20%)

was measured and incorporated appropriately into their model through stochastic

initial conditions. This explained the evolution of the level of observed fluctuations

in the sideband trajectories although it was found to be inadequate by itself, to

account for the damping of the trajectories. They found that all three physical

characteristics mentioned above, namely the multimode nature of the pump input,

the stochastic phase fluctuations along the length of the fiber, and the stochastic

initial power fluctuations were crucial to explaining the different features of the

experimental measurements [28].
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B.2 Stochastic NLSE Model

In the present work, we have developed and implemented an unconditionally

stable scheme for integrating the NLSE that successfully incorporates phase noise

into the SSFM. Thus, we are now in a position to harness the high frequency /

time resolution of the SSFM together with its efficient convergence properties. Due

to these advances, we are now able to do simulations with much higher frequency

resolution (60 MHz as compared to 300 GHz in the ODE model). This high res-

olution, coupled with an appropriate convolution scheme, enables us to compare

these simulated spectra with the composite spectra observed by the spectrometers

which had a resolution of ∼ 60 GHz. This was not possible with the truncated ODE

model as the resolution of the simulated spectra in that case was ∼ 300 GHz. For

exactly the same levels of phase fluctuations, and initial condition fluctuations as

used in Ref. [28], comparisons for the present NLSE model with the experimental

sideband evolution functions ρi(z) show excellent quantitative agreement. These

results, along with the algorithms employed, are described in detail in this section.

We have identified linear refractive index fluctuations along the fiber length to be

a strong candidate for a physical source of the stochastic phase fluctuations. A

comparison between the various possible sources is given in Sec. B.4.

Under the assumption that the electric field of the light in the fiber has a slowly

varying envelope A(z, τ), and that the fiber medium has an instantaneous nonlinear

response, the system is well described by the nonlinear Schrödinger equation (NLSE)
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with a linear multiplicative stochastic term

∂U

∂z
+
iβ(2)

2T 2
0

∂2U

∂τ 2
+
αU

2
+ iΓ(z, τ)U − iγP0|U |2U = 0. (B.1)

Z is distance along the length of the fiber, U(z, τ) = A(z, τ)/
√
P0 is the complex

electric field envelope A(z, τ) normalized to the absolute amplitude of the field
√
P0,

P0 is the total power in the fiber, τ is time normalized to a convenient time scale

T0(∼ 1 ns) measured in a reference frame moving with the group velocity of the

pulse [τ = (t − z/vg)/T0]. The simulations are carried out for exactly the same

physical parameters as the experiments and simulations reported by Hart et al.

[28], i.e., β(2) = 55 (ps)2/km, is the group velocity dispersion of the fiber at the

operating wavelength λ0 ∼ 632 nm (k0 ∼ 107m−1). A loss of ∼ 6 dB/km gives α =

0.0014 m−1 as the loss in the fiber at this wavelength. The nonlinearity coefficient

γ = 0.019W−1m−1 is given by

γ =
ωaven

I
2

cAeff
, (B.2)

where Aeff is the effective core area of the fiber, nI2 is the Kerr coefficient for the

intensity-dependent refractive index, and ωave is the average angular frequency of

the wave envelope. Γ(z, τ) is a linear multiplicative phase noise field. In this study

the noise field is assumed to be δ-correlated in both space and time. The evolution

of the FWM dynamics is found to be sensitive to the strength of this noise field. It

can be physically interpreted as phase noise arising due to fluctuations in the linear

refractive index of the fiber medium. A detailed discussion of its physical origin is

given in Sec. B.4.

The system was simulated using the Split-Step Fourier Method (SSFM) [8].
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An algorithm for appropriately incorporating stochastic phase fluctuations along the

length of the fiber in the SSFM was developed and is summarized below.

The NLSE is composed of linear and nonlinear terms, and can be written in

operator form as

∂U

∂z
= (D̂ + Ŝ + N̂)U

D̂ =
−iβ(2)

2T 2
0

∂2

∂τ 2
− α

2

Ŝ = iΓ(z, τ)

N̂ = iγP0|U |2, (B.3)

where D̂, Ŝ and N̂ are linear (dispersive), nonlinear and stochastic operators, re-

spectively. It has an exact solution for infinitesimal ∆z given by -

U(z + ∆z, τ) = exp[∆z(D̂ + Ŝ + N̂)]U(z, τ), (B.4)

which can be approximated by

U(z + ∆z, τ) ≈ exp[∆zD̂]exp[∆zŜ]exp[∆zN̂ ]U(z, τ). (B.5)

The execution of exp[∆zN̂ ] is carried out in τ -space:

B1(z, τ) = exp[∆zN̂ ]U(z, τ). (B.6)

The execution of exp[∆zŜ] and exp[∆zD̂] is carried out in ω-space.

In particular, the stochastic phase fluctuations are introduced by modifying

the phase φj of each frequency component ωj of the complex field according to

B2(z, ω) = F [B1(z, τ)]

B3(z, ωj) = exp[iδφ(z, ωj)]B2(z, ωj), (B.7)
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where F represents the Fourier transform operation.

This process only modifies the phase of each complex frequency component,

leaving its absolute value unchanged. Thus the algorithm conserves the total power

and the unconditional stability of the system.

The stochastic phase fluctuations δφ(z, ωj) are taken to be δ-correlated in

frequency as well as spatially along the fiber length. The Box-Muller algorithm [36]

was used to generate Gaussian random deviates from computer-generated uniform

random deviates r1j and r2j at each spatial step and for each frequency component

ωj. The fluctuations are given by

δφ(z, ωj) =
√
−2σ2

φ∆zln(r1j)cos(2πr2j). (B.8)

This is followed by the execution of exp[∆zD̂], which is also carried out in

Fourier space, followed by the inverse transform

U(z + ∆z, τ) = F−1[exp[∆zD̂(iω)]B3(z, ω)]. (B.9)

D̂(iω) is obtained by replacing (∂/∂τ) by iω.

The basic form of the initial complex wave envelope function is

U(0, τ) = exp

(
− τ 2

2τ 2
p

)
exp

(
iΩτ

2

)
+

exp
(
− iΩτ

2

)
 , (B.10)

where τp is the pulse width Tp =5 ns FWHM, normalized to the time scale T0,

Ω=366 GHz is the frequency detuning between the two laser sources normalized to

a frequency scale Ω0 = 62.5 MHz. Figure B.1(a) shows a plot of this pulse |U(0, τ)|2.

The overall Gaussian envelope has an FWHM of 5 ns, the closely spaced dark lines
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Figure B.1: Multimode pulse input to the NLSE: (a) input pulse in time
domain and (b) input spectrum.
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are due to the 366 GHz (∼3 ps) beating between the two input pump frequencies.

The 2 ns modulations on the pulse are due to the 0.5 GHz mode-structure in the

blue-shifted pump wave. Figure 2.1(b) shows the input spectrum of this pulse which

consists of two highly monochromatic pump waves with a detuning of Ω=366 GHz.

The spectrum of the blue-shifted pump, upon magnification, is seen to be composed

of two very closely spaced peaks, with a separation of ∆ν=0.5 GHz. Hart et al. [28]

did not use pulsed wave functions in their NLSE simulations as the size of the FFT

required to do so made it computationally prohibitive at that time. The size of the

FFT was chosen such that it would accommodate a time span of 16 ns in order to go

sufficiently far into the wings on the Gaussian pulse; and a frequency span of 16 THz

in order to accommodate all the sidebands generated and prevent spurious effects

due to the reflection boundary conditions implicit in the SSFM algorithm. These

considerations dictated the size of the FFT to be ≥(16 THz)·(16 ns) = 256000. The

nearest power of 2 is 218 = 262144, which has been used throughout the present work.

The incorporation of the pulsed nature of the light was found to be necessary in

explaining the dynamics. From the perspective of the coupled amplitude equations

used by Hart et al. [28], the present model is equivalent to a coupled-ODE model

with 218 coupled ODEs.

Upon incorporation of the multimode nature of the blue input pump laser

source and the stochastic fluctuations in the initial power in the lasers, the initial
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Figure B.2: Effects of inclusion of the multimode nature (∆ν = 0.5 GHz)
of the blue-shifted input pump laser on the 1st order sideband evolution
as a function of fiber length for P0 = 2.1 W. Dashed curves represent sim-
ulations without the multimode nature and solid curves represent simu-
lations with the multimode nature. Ω = 366 GHz, γ = 0.019 W−1 m−1,
and β(2) = 55 ps2/km (a) power in the blue-shifted sideband, (b) power
in the red-shifted sideband.
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Figure B.3: Effects of inclusion of the multimode nature (∆ν = 0.5 GHz)
of the blue-shifted input pump laser on the 1st order sideband evolution
as a function of fiber length for P0 = 5.5 W. Dashed curves represent sim-
ulations without the multimode nature and solid curves represent simu-
lations with the multimode nature. Ω = 366 GHz, γ = 0.019 W−1 m−1,
and β(2) = 55 ps2/km (a) power in the first-order blue-shifted sideband,
(b) power in the first-order red-shifted sideband, (c) power in the second-
order blue-shifted sideband, (d) power in the second-order red-shifted
sideband.
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Figure B.4: Effects of inclusion of the pulsed nature (5 ns FWHM) of the
input pump laser light on the first-order sideband evolution as a function
of fiber length for P0 = 2.1 W. Dashed curves represent cw simulations
and solid curves represent pulsed simulations. Ω = 366 GHz, ∆ν = 0.5,
γ = 0.019 W−1m−1, and β(2) = 55 ps2/,km (a) power in the blue-shifted
sideband, (b) power in the red-shifted sideband.
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Figure B.5: Effects of inclusion of the pulsed nature (5 ns FWHM) of
the input pump laser on the first- and second-order sideband evolution
as a function of fiber length for P0 = 5.5 W. Dashed curves represent cw
simulations and solid curves represent pulsed simulations. Ω = 366 GHz,
∆ν = 0.5, γ = 0.019 W−1m−1, and β(2) = 55 ps2/,km (a) power in the
first-order blue-shifted sideband, (b) power in the first-order red-shifted
sideband, (c) power in the second-order blue-shifted sideband, (d) power
in the second-order red-shifted sideband.
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wave function takes the form

U(0, τ) = exp

(
− τ 2

2τ 2
p

)


√
1+δρ1

2

 exp
(
i(Ω+∆ν)τ

2

)
+

exp
(
i(Ω−∆ν)τ

2

)


+
√

1 + δρ2exp
(
− iΩτ

2

)


. (B.11)

∆ν = 0.5 GHz is the frequency separation between the two longitudinal modes in

the blue-shifted pump. δρ1 and δρ2 are Gaussian random deviates (generated using

the Box-Muller algorithm [36]) that represent the initial power fluctuations in each

of the pump laser sources. Their standard deviations were taken to be, σρ1 = 0.2,

σρ2 = 0.11 for simulations from 0 m to 20 m, σρ1 = 0.12, σρ2 = 0.05 for simulations

from 20 m to 50 m along the length of the fiber. This is exactly the same prescription

used by Hart et al. [28] in their simulations and is dictated by their experimental

measurements of the fluctuations in the pump laser intensities.

At this point it is worth noting the effects of the inclusion of two attributes of

the input laser light, namely, the multimode nature of the blue-shifted pump, and

the pulsed nature of the input light (assumed to be cw in the simulations reported

by Hart et al. [28]).

Figure B.2 shows a comparison between simulations with (solid curves) and

without (dashed curves) the multimode nature for an input pump power of 2.1

Watts. The simulations with the mode structure show the asymmetry between

the blue- and red-shifted sideband evolution, in particular, the difference in spatial

wavelength between the two, and a non-return to zero nature of the evolution, as

observed in the experimental data (black dots with error bars). These features are
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absent in the simulations without mode-structure. ρ3 and ρ4 stands for the first order

blue- and red-shifted sidebands respectively. Figure 2.3 shows the corresponding

comparison for the case of 5.5 Watts of input pump power. Here, too, the simulations

incorporating the multimode nature of the blue-shifted pump (solid curves) are seen

to be an improvement over those not incorporating it (dashed curves). A feature

of the experimental data (black dots with errorbars) is that for the ρ3 sideband,

the initial part of the evolution involves a peak followed by a shoulder, while for

the ρ4 sideband, the initial part of the evolution involves a shoulder followed by a

peak. This feature, too, is seen to occur as a result of the inclusion of the multimode

nature of the blue-shifted pump.

The effect of inclusion of the pulsed nature of the input beam is seen in Fig.

B.4 (for the 2.1 Watt case) and Fig. B.5 (for the 5.5 Watt case). The solid dashes

represent simulations for a cw input beam and the solid curves represent those for a

pulsed input beam. The incorporation of the pulsed nature clearly results in damp-

ing of the sideband trajectories which are seen to come closer to the experimental

data [28] (black dots with error bars).

Use of the FFT algorithm makes evaluation relatively fast compared to other

finite-difference schemes. The computational error is O(∆z2), thus the solution

converges with decreasing spatial step-size ∆z.

The simulations were tested for the conservation of total power along the fiber

length (by setting the loss α to zero) and for the conservation of asymmetry [35, 28]
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given by

C(Z) =
∞∑
i=1

(2i− 1)[ρ2i−1(Z)− ρ2i(Z)]. (B.12)

A clearer picture of the evolution of the sidebands is obtained by plotting both

the power in the sidebands and their standard deviations as a function of length

along the fiber. Figures B.6(a) and B.6(b) show a comparison between simulation

and experiment of the evolution of the first-order blue-shifted (ρ3) and red-shifted

(ρ4) sidebands, respectively, for an input power of 2.1 W. The dashed curves rep-

resent NLSE simulations which include the stochastic nature of the input powers

of the pump lasers but exclude the stochastic phase fluctuations added along the

length of the fiber, an attribute which is included in the simulations represented by

the solid curves. The black dots with error bars represent the experimental data.

The measured sideband power, normalized to the total power in the fiber, is pe-

riodic in length but appears to be damping to a constant value. The measured

data also show a clear difference between the spatial wavelengths of oscillation of

the blue-shifted (ρ3) and red-shifted (ρ4) sidebands trajectories, respectively. Both

these features are captured well by both the simulations. Figures B.6(c) and B.6(d)

compare experimental and simulated measures of the evolution of the standard de-

viation in the sideband power along the fiber length. It is clearly observed that

simulations with phase noise added to the light field along the length of the fiber

(solid curves) are closer to the experimental data as compared to those that exclude

this feature (dashed curves). This indicates the instrumental nature of the phase

fluctuations in explaining key features of the dynamics.
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Figure B.6: Comparison between the experimental measurements
[28](black), the random initial condition NLSE model excluding phase
noise (dashed curves) and the stochastic phase noise NLSE model (solid
curves) showing the first-order sideband evolution as a function of fiber
length for P0 = 2.1 W, Ω = 366 GHz, ∆ν = 0.5 GHz,γ = 0.019 W−1m−1,
and β(2) = 55ps2/km: dynamical evolution of the: (a) power in the blue-
shifted sideband, (b) power in the red-shifted sideband, (c) fluctuations
in the blue-shifted sideband, (d) fluctuations in the red-shifted sideband.
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The apparent damping of the periodic sideband trajectory is seen more dra-

matically in Figs. B.7(a) and B.7(b), which show the evolution of the first-order

sideband power along the fiber for an input power of 5.5 W. The two first-order

sidebands evolve differently. They appear to damp to a constant value at a faster

rate than for the case with an input pump power of 2.1 W. Here again, NLSE sim-

ulations that incorporate phase noise along the length of the fiber (solid curves)

are much more successful in accurately capturing the dynamical features of the

system than NLSE simulations that do not take this feature into account (dashed

curves). Figures B.7(c) and B.7(d) show a comparison between the simulated and

measured standard deviations. Comparisons for the second-order blue-shifted (ρ5)

and red-shifted (ρ6) sidebands, respectively, are shown in Figs. B.7(e) and B.7(f).

The observed dynamical evolution of the sidebands is found to depend sensi-

tively on the strength of the stochastic phase fluctuations. Yet, best agreement with

the experimental results of Hart et al. [28] is achieved with exactly the same noise

strength σ2
φ as used in their truncated ODE model, namely, σ2

φ = 0.0067 m−1. They

report that including phase noise in their FWM calculations resulted in a spurious

linear drift in the trajectories for the sideband power with length. To remove this

artifact of the computations, they added a linear loss to their coupled ODEs. They

set the loss coefficient α = 0.0046 m−1 by finding the value that removed this in-

creasing slope. We have observed exactly the same secular growth phenomenon for

a wide range of the noise strength σ2
φ and have arrived at an empirical prescription

for α namely, α ∼ σ2
φ, where σ2

φ is the variance of the added phase noise. This

indicates the general nature of dynamics resulting from the addition of stochastic,
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Figure B.7: This figure caption is indented and single-spaced. Compar-
ison between the experimental measurements [28] (black), the random
initial condition NLSE model excluding phase noise (dashed curves) and
the stochastic phase noise NLSE model (solid curves) showing the first-
and second-order sideband evolution as a function of fiber length for
P0 = 5.5 W, Ω = 366 GHz, ∆ν = 0.5 GHz, γ = 0.019 W−1m−1, and
β(2) = 55 ps2/km: dynamical evolution of the: (a) power in the first-
order blue-shifted sideband, (b) power in the first-order red-shifted side-
band, (c) fluctuations in the first-order blue-shifted sideband, (d) fluc-
tuations in the first-order red-shifted sideband, (e) power in the second-
order blue-shifted sideband, (f) power in the second-order red-shifted
sideband.
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δ-correlated phase fluctuations to systems governed by nonlinear partial differential

equations [31].

It is remarkable that the strength of the phase noise required is the same in

both the 2.1 W and the 5.5 W cases. Further, it is worth noting that exactly the

same noise strength was used by Hart et al. [28], the difference being that they

introduced phase noise only in the pump frequencies, whereas we have introduced

it in all the Fourier modes (∼ 218). As a confirmation of this result, they also

performed experiments and numerical simulations examining the sideband power

dependence on the input power at a fixed length of 50.4 m of the same fiber. We

have repeated these simulations with the stochastic NLSE model and the results are

shown in Figs. B.8(a) (blue-shifted sideband) and B.8(b) (red-shifted sideband). The

experimental measurements of the sideband powers are represented by filled squares

and the results of numerical simulations are represented by triangles (without phase

noise) and by circles (with phase noise). The simulations are seen to follow the

general trend seen in the experiments. As the pump power is increased, the triangles

(without phase noise) start to disagree with experiment, whereas the circles (with

phase noise) are much closer to experiment. The phase noise strength used in these

simulations was exactly the same as that used in the simulations depicted in Figs. B.6

and B.7. The agreement between the phase noise simulations and the experimental

data was (once again) highly sensitive to the noise strength. Since this experiment

(unlike those shown in Figs. B.2 - B.7) is non-destructive, it can be used to deduce

the strength of phase noise processes in a given optical fiber. It will be shown in

Sec. B.4 that a likely cause of the phase noise is fluctuation in the linear refractive
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index of the fiber. The noise strength deduced from the present computational study

corresponds to a refractive index inhomogeneity of 〈∆n2〉 ∼ 10−16.

Till now the comparisons between our simulations of the full NLSE and the

truncated ODE model give basically the same results, although with much better

agreement with experiment. However, the full NLSE can also provide a detailed

comparison with the experimental spectra. This was not available from the trun-

cated ODE model. The simulations reported in this work were carried out with a

very high frequency and time resolution in order to incorporate the fact that the

input light was not cw, but was composed of ∼ 5 ns long pulses; and that the number

of sidebands generated required the frequency spread of the FFT to be ∼ 16 THz,

while resolving a longitudinal mode-structure of ∆ν ∼ 0.5 GHz. The spectral reso-

lution used was ∼ 0.05 GHz, whereas the spectrometer used to observe the spectra

had a resolution 1000 times larger (∼ 50 GHz). To account for this difference, the

simulated spectra were first convolved with a Gaussian of unit peak and 62 GHz

FWHM, before they were compared with the observed spectra.

Figures B.9(a) and B.9(b) show three-dimensional plots of the average experi-

mental FWM output spectrum along the length of the fiber for input pump powers

of 2.1 W and 5.5 W, respectively (courtesy Hart et al. [28]). The vertical axis repre-

sents the intensity, normalized to the peak power in one of the input pumps, plotted

on a logarithmic scale. The pump frequencies are centered on +/ − Ω/2 and the

fiber length is increasing into the page. Figures B.9(c) and B.9(d) show the corre-

sponding comparisons based on simulations using the stochastic-NLSE model. The

basic features of the spectral evolution are captured by the simulations.
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Figure B.8: Comparison between the experimental measurements (filled
squares), simulations without stochastic phase fluctuations (open trian-
gles) and with stochastic phase fluctuations (open circles) of the first-
order sideband power versus pump input power for L=50.39 m, and
Ω = 366 GHz: power in the (a) blue-shifted sideband and (b) red-shifted
sideband.
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Figure B.9: Evolution of the FWM spectrum along the fiber
(a) P=2.1 W, experiment, (b) P=5.5 W, experiment, (c) P=2.1 W,
stochastic-NLSE model, (d) P=5.5 W, stochastic-NLSE model.

Figure B.10: Experimental FWM output spectrum (solid line), con-
volved spectra from simulations of the stochastic NLSE model (dashed
line), and hyperbolic secant envelope fit (dotted line) for pump input
powers P0 of (a) 2.1 W, (b) 5.5 W, (c) 6.7 W, (d) 8.3 W, (e) 12.7 W,
(f) 17.4 W, fiber length L= 50.39 m, Ω = 366 GHz, ∆ν = 0.5 GHz,
γ = 0.019 W−1m−1, and β(2) = 55 ps2/km.
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Hart et al. [28] also documented the experimentally observed FWM output

spectra for a fixed fiber length of 50.39 meters for 6 different input pump powers.

They state the coefficients A and B of the hyperbolic secant envelopes that best fit

the output spectra which are given by

f(ω) = Asech(Bω), (B.13)

where A and B are the experimental fit parameters.

The hyperbolic secant parameters A and B, that best fit the simulated spectra

are exactly the same as those that best fit the experimental spectra [28] for all the

6 cases of input power considered. Figure 2.10 shows an overlap of the simulated

spectra (dashed line), with the experimental spectra (solid line) and the experimen-

tal hyperbolic secant envelope (dotted line) for 6 different pump powers, namely, (a)

2.1 W, (b) 5.5 W, (c) 6.7 W, (d) 8.3 W, (e) 12.7 W, (f) 17.4 W. The hyperbolic secant

parameters for each of these pump powers are (a) A=3.85 and B=0.36, (b) A=2.26

and B=0.27, (c) A=1.81, B=0.25, (d) A=1.56 and B=0.23, (e) A=0.98,B=0.20, and

(f) A=0.81 and B=0.20. The exact shapes of the simulated spectra match very well

with the experimental spectra for low input pump powers (2.1 W and 5.5 W), but

tend to lack the ”filled-in” character of the experimental spectra at higher powers

(6.7 W, 8.3 W, 12.7 W and 17.4 W).

B.3 Discussion

Hart et al. [28] postulated that strong candidates for the possible physical

sources of the phase fluctuations are stimulated Brillouin scattering, stimulated
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Raman scattering and fiber medium inhomogeneities. Brillouin scattering was elim-

inated as a source, since a backward propagating wave, which is a signature of

Brillouin scattering in optical fibers, was not observed in the experiments. We have

modeled stimulated Raman scattering [27, 37] for our system and have found no ev-

idence to support the hypothesis that it could be a possible source of the stochastic

phase fluctuations for fiber lengths up to 50 meters and pump power levels up to 5.5

Watts. A more detailed discussion of the Raman scattering simulations performed

is given in Chap. 3. Apart from these, quantum phase fluctuations are another well

known, though extremely weak, source of phase noise in optical fibers [8, 38].

Fiber medium inhomogeneities were identified as the major cause of the stochas-

tic phase fluctuations. These inhomogeneities can manifest themselves through

spatial and/or temporal fluctuations in the fiber parameters, namely, the linear

refractive index n0, the group velocity vg, the group velocity dispersion β(2) and

the nonlinearity γ [39]. Of these, the fluctuation in the linear refractive index was

found to be the only source of phase fluctuation that had a significant effect on

the dynamics. A relationship between the level of refractive index fluctuations and

the corresponding level of phase fluctuations has been arrived at. It is found that

refractive index fluctuations as small as σ2
n ∼ 10−17 m−1 can cause the desired phase

fluctuations. Possible sources of these refractive index fluctuations are discussed

below.

Consider the modified nonlinear Schrödinger equation (NLSE) which is stated

below, with the linear multiplicative noise term represented in terms of spatial and
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temporal fluctuations in the refractive index of the fiber.

∂U

∂z
+
iβ(2)

2T 2
0

∂2U

∂τ 2
+
αU

2
+ ik0δn(z, τ)U − iγP0|U |2U = 0, (B.14)

where δn(z, τ) is the spatial and temporal variation of the refractive index along the

fiber. It can be caused by temperature and density fluctuations in the fiber [40].

The thermodynamic estimate for ∆n is given by [40]

〈∆n2〉 =
−kTρ2

V 2

(
∂V

∂P

)
T

(
∂n

∂ρ

)2

T

+
kT 2

ρV Cv

(
∂n

∂T

)2

ρ

. (B.15)

This gives the mean-square index fluctuation in terms of the properties of the

material. It can be rewritten as

〈∆n2〉 =
Vρ + VT
V

= 〈∆n2〉ρ + 〈∆n2〉T . (B.16)

For a fiber of length z=1 m and radius r=2.82µm (Volume V=2.5 ×10−12 m3),

these have been calculated to be

〈∆n2〉ρ ∼ 10−21 ≡ 〈∆ρ2〉 ∼ 10−14kg
2

m6
,

〈∆n2〉T ∼ 10−23 ≡ 〈∆T 2〉 ∼ 10−12 ◦C2. (B.17)

It should be noted that 〈∆n2〉 ∝ (1/z) ⇒ δn ∝ (1/
√
z). The corresponding

phase fluctuation that this would lead to in the NLSE is given by δφ = k0δnz ∝
√
z,

which is equivalent to the prescription for incorporating phase fluctuations into the

stochastic NLSE model described in Sec. 2.3, namely, 〈∆φ2〉 = 6.7× 10−3z. Hart et

al. [28] used the same prescription and the same noise strength in their truncated-

ODE model. From this we can estimate the level of refractive index fluctuation that
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corresponds to the noise strength used in the simulations described in Sec. 2.3

〈∆n2〉 =
6.7× 10−3

k2
0

= 6.78× 10−17

≡ 〈∆T 2〉 ∼ 10−6 ◦C2 ≡ ∆T ∼ 10−3 ◦C (B.18)

The temperature coefficient of the refractive index of silica [40], (∂n/∂T )ρ ∼

10−5 ◦C−1. Thus even small spatio-temporal temperature fluctuations of ∼ 10−3 ◦C

are enough to cause the inferred level of refractive index fluctuations.

The refractive index fluctuations could also be due to inhomogeneities in the

density of the fiber material, frozen in at the time of manufacture of the fiber. The

simulations were averaged over ∼ 600 iterations to get a good estimate of the power

fluctuations in the sidebands. Initially, simulations were performed with a different

phase noise distribution for each iteration. Later, a particular (arbitrary) phase noise

distribution was selected and frozen for all the iterations. This did not reduce the

level of damping observed in the sideband trajectories provided that the strength of

the phase noise was kept the same, thus indicating that density fluctuations induced

during fiber manufacture could be a possible source. The phase noise was modeled

as δ-correlated in both space and time. A more realistic approach would be to use

correlated noise. Numerical methods to incorporate linear multiplicative correlated

noise into the NLSE have been developed by M.J. Werner et al. [32].

B.4 Conclusions

The role of stochasticity in the dynamical evolution of four-wave-mixing pro-

cesses in an optical fiber has been investigated. This research consisted of theoretical
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and numerical computations. It focuses on tracing the evolution of the sidebands,

generated through FWM, along a length of optical fiber. Detailed comparisons

were made with the experimental results of Hart et al. [28] and the agreement was

excellent. The present work uses numerical techniques that have much higher res-

olution and better efficiency, and it presents a theoretical basis for the role of the

stochasticity in the dynamics. The system is known to be governed by the nonlinear

Schrödinger equation (NLSE) to a very good approximation [8].

A powerful technique that can be used for simulations of the stochastic NLSE

is the Split-step Fourier Method (SSFM) [8]. An algorithm for the direct implemen-

tation of stochastic processes along the length of the fiber in the SSFM has been

developed. The advantages of this approach with respect to the coupled-ODE ap-

proach are that we can carry out simulations with much higher frequency and time

resolution without sacrificing computational efficiency.

The physical sources of these stochastic phase fluctuations are investigated

quantitatively and are identified to be due to fluctuations in the linear refractive

index of the fiber. Strong candidates for the causes of these refractive index fluctu-

ations are temperature fluctuations in the fiber medium caused by the fluctuating

temperature of the fiber environment, density fluctuations in the fiber medium frozen

into the fiber during manufacture, and intrinsic thermodynamic fluctuations in the

temperature and density of the fiber.

The experiments performed by Hart et al. [28] can be used to determine the

level of these refractive index fluctuations in commercial fibers. Results described

in Figs. 2 and 3 represent a destructive experiment that measures the sideband
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evolution with fiber length for a fixed input pump power, necessarily requiring the

fiber to be cut repeatedly. The level of refractive index fluctuations can be used as

a parameter in the simulations to best fit the experimental results. Alternatively,

Fig. 4 represents a non-destructive experiment that measures the sideband evolution

with input pump power for a fixed fiber length. These experiments are found to be

effective for estimating the refractive index fluctuations, as the dynamics is observed

to be sensitively dependent on the strength of the phase fluctuations.
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