Multivariable Calculus

Extra Credit: Proof of the Cauchy-Schwarz Inequality Due at the beginning of class on Wednesday, September 9, 2015

Theorem (The Cauchy-Schwarz Inequality)

Suppose $\vec{x}, \vec{y} \in \mathbb{R}^n$. Then

$$|\vec{x} \bullet \vec{y}| \le \|\vec{x}\| \|\vec{y}\|.$$
 (1)

Proof

First note that, if either \vec{x} or \vec{y} is the zero vector, then $\vec{x} \bullet \vec{y} = 0$ and $\|\vec{x}\| \|\vec{y}\| = 0$. In this case the theorem is trivially true because $|\vec{x} \bullet \vec{y}| = |0| = 0 = \|\vec{x}\| \|\vec{y}\|$.

Suppose, then, that neither \vec{x} nor \vec{y} is the zero vector. We will establish the truth of an inequality equivalent to (1), namely

$$-\|\vec{x}\|\|\vec{y}\| \le \vec{x} \bullet \vec{y} \le \|\vec{x}\|\|\vec{y}\|.$$
(2)

To do so we validate the right- and left-hand sides of inequality (2) separately.

Step 1 $(\vec{x} \bullet \vec{y} \le ||\vec{x}|| ||\vec{y}||)$:

The stipulation that neither \vec{x} nor \vec{y} is the zero vector allows for the following definitions of (unit) vectors \vec{u} and \vec{w} :

$$\vec{u} = \frac{\vec{x}}{\|\vec{x}\|}, \ \vec{w} = \frac{\vec{y}}{\|\vec{y}\|}.$$
 (3)

Observe that

$$0 \leq \|\vec{u} - \vec{w}\|^{2}$$

= $(\vec{u} - \vec{w}) \cdot (\vec{u} - \vec{w})$
= $\vec{u} \cdot \vec{u} + \vec{w} \cdot \vec{w} - 2(\vec{u} \cdot \vec{w})$
= $\|\vec{u}\|^{2} + \|\vec{w}\|^{2} - 2(\vec{u} \cdot \vec{w})$
= $1 + 1 - 2(\vec{u} \cdot \vec{w})$
= $2 - 2(\vec{u} \cdot \vec{w})$, (4)

which implies that $2(\vec{u} \bullet \vec{w}) \leq 2$, or

$$\vec{u} \bullet \vec{w} \le 1. \tag{5}$$

Substituting the values for \vec{u} and \vec{w} defined by (3) into inequality (5) yields $\frac{\vec{x}}{\|\vec{x}\|} \bullet \frac{\vec{y}}{\|\vec{y}\|} \leq 1$, which implies $\vec{x} \bullet \vec{y} \leq \|\vec{x}\| \|\vec{y}\|$.

Step 2 $(-\|\vec{x}\|\|\vec{y}\| \le \vec{x} \bullet \vec{y})$: Begin by defining the unit vector \vec{s} as

$$\vec{s} = \frac{-\vec{x}}{\|-\vec{x}\|} = \frac{-\vec{x}}{\|\vec{x}\|}.$$

Complete this step for extra credit. To do so, go through a similar argument represented by the expressions in (4), but with the vector $\vec{s} - \vec{w}$. Pay close attention to the minus signs as you proceed.

This is where you should begin Step 2.