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Abstract. Supported Vectored Machine (SVM) is one of the most his-
torical, but also most commonly used machine learning models in super-
vised learning. In this project, I built a SVM model with the Sequential
Minimal Optimization (SMO) algorithm using SAS IML procedure. Also,
I simulated some linearly separable data using data step and compared
the result of the SVM model with the SAS build-in Logistic Procedure.
Finally, I applied the model to a famous dataset called credit.
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1 Summary

In this project, I generated a training set and a test set (following the same dis-
tribution) using SAS DATA step. Then I used SAS IML procedure to implement
the Sequential Minimal Optimization Pseudo code, which allows me to approx-
imate the parameters that we need in the Supported Vector Machine Model.
Then utilizing the build-in Logistic procedure, I built a Logistic Model and used
the confusion matrix and SGPLOT procedure to visualize the result. Next, I
used the two models in a classic binary classification dataset, the credit dataset,
to compare the performance of this algorithms and made some conclusions.

2 Supported Vector Machine

The original SVM model was invented by Vladimir Vapnik and Alexey Chervo-
nenkis in 1963. In 1992, a more powerful model was proposed by Bernhard Boser,
Isabelle Guyon and Vladimir Vapnik, which can create nonlinear classifiers by
applying the kernel trick to maximum-margin hyperplanes. In this report, we
will focus on the linear SVM in binary classification.

Fig. 1. mapping data into higher dimensional space

2.1 Linear SVM

First of all, consider the training set of n points {xi, yi} i = 1, . . . , n where
yi ∈ {−1, 1} is the class of the point xi. Here, we see the two classes as yi = 1
and yi = −1. We want to find a classifier (a hyperplane) which can map xis
into higher dimensional space so that the two different classes of points can be
divided. Also we want the hyperplane to have the maximum-margin, which can
maximize the distance of the hyperplane and nearest points from both groups.
In linear cases, the hyperplane can be written as:

xiw + b = 0



We want to find two parallel hyperplanes that can also separate the data and
we want their distance to be as large as possible. Heres a way to describe them:

xiw + b = +1

and
xiw + b = −1

Its not difficult to prove that the distance between the two hyperplanes is 2
||w|| :

d+ + d− =
|1− b|
‖w‖

+
| − 1− b|
‖w‖

=
2

‖w‖
(1)

which means we want to minimize ‖w‖ since it is always positive. Besides, we
want for every i ∈ (1, n), xi and yi follows the constraints:

xiw + b ≥ +1, yi = +1 (2)

xiw + b ≤ −1, yi = −1 (3)

≡ (4)

yi(xiw + b)− 1 ≥ 0, ∀i (5)

Fig. 2. 2 hyperplanes

2.2 Linear SVM

However, in most cases it is impossible for all the points in the training data to
follow the rules. To solve this problem, people add this constraint as a regular-
ization part in the object function which we want to minimize.



2.3 Lagrange Multiplier

As mentioned before, we want to maximize the margin, which is the same as
minimize ‖w‖. Also we want them data points to be properly classified.
Thus we want to solve the following optimization problem:

Minimize ‖w‖
2

2
s.t yi(xiw + b)− 1 ≥ 0

What we want is to find the w and b that can make this statement true.
However, it is almost impossible to solve this equation directly. In order to solve
this optimization problem, we need to introduce the Lagrange Multiplier.
In mathematical optimization, the method of Lagrange multipliers is a strategy
for finding the local maxima and minima of a function subject to equality con-
straints.
For the case of only one constraint and only two choice variables, consider the
optimization problem:

Minimize f(x, y)
s.t g(x, y) = 0

This looks exactly like the problem that we want to solve and we can switch
the problem into a lagrangian problem. For convenience, I will skip the mathe-
matical proof part and therefore we can change the problem into:

Minimize Wp(α) = ‖w‖2
2 −

l∑
i=1

αiyi(xiw + b) +

l∑
i=1

αi

We can see this as a convex quadratic programming problem with the dual:

Maximize W (α) =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyj(xixj)

The reason that we make this transformation is that the solution of dual prob-
lem can be easily approximate with computer. Although there will always be a
small gap between the approximated result and the real answer, it is still very
powerful and useful.

2.4 Finding Classifier

Usually, most αi’s are 0 and the points with αi > 0 are called ”supported
vectors”.
After we find the αi’s, we need to use them to compute the vector w and the
scalar b. But how? In the dual problem, we want to:

maximize W (α)

where,

W (α) =

n∑
j=1

αj −
1

2

∑
i,j

αiαjyiyjxixj



and the α ≥ 0 satisfying:
n∑

j=1

αjyj = 0

Using KKT-conditions for optimality,

∇wL = 0, i.e., w =

n∑
j=1

αjyjxj

∇bL = 0, i.e.,

n∑
j=1

αjyj = 0

Once an optimal α is obtained we find w as the linear classifier of the xi’s and
we can also find b ,

b =
−
∑

i,j αiαjyiyj < xi, xj >∑
j αj

3 Sequential Minimal Optimization

In order to approximate the dual problem in SAS there are many modern Algo-
rithms like Sub-gradient descent and coordinate descent. In this project, I used
a method called Sequential Minimal Optimization (SMO).
SMO method is very commonly used because there are many optimization in-
side this algorithm which makes it very fast to converge, which means it is very
useful when the dataset is large.
In short, the SMO algorithm selects two parameters, αi and αj and optimizes
the objective value jointly for both these αs. Finally it adjusts the b parameter
based on the new αs. This process is repeated until the αs converge.

3.1 Simplified SMO

In this report, we use a simplified version of the Sequential Minimal Optimization
algorithm for training support vector machines.The original SMO algorithm con-
tains many optimizations designed to speed up the algorithm on large datasets
and ensure that the algorithm converges even under degenerate conditions. The
simplified version, however, is not even guaranteed to converge for all data sets,
so if you want to use SVMs on a real-world application, you should either im-
plement the full SMO algorithm, or find a software package for SVMs.The SVM
model can be easily found in packages like Sk-learn in Python.

3.2 Main Steps

What we do is that we iterate over all i, i = 1, ..., n. If i does not fulfill the KKT
conditions to within some numerical tolerance, we randomly select j from the
remaining n-1 α’s and try to optimize i and j together.



Firstly we want to find bounds L and H such that L ≤ j ≤ H must hold in order
for j to satisfy the constraint that 0 j C. It can be shown that these are given
by the following:

if yi 6= yj , L = max(0, αj − αi), H = min(C,C + αj − αi)

if yi = yj , L = max(0, αj + αi − C), H = min(C,αj + αi)
Then we update and fix the α’s into the upper and lower bounds. The SAS code
will be provided in the appendix.

4 SAS Implementation

In this section, I use SAS to implement the SMO algorithm so I can build a SVM
model using the training data. In SAS Enterprise Miner, there is a build-in SVM
function but for convenience in this project I used logistic regression (the logistic
procedure in SAS) to evaluate the result that I got using the SVM model.

4.1 Data Simulation

I simulated 1200 data points using 2 different probability density functions so
that we can test this model. In order to visualize the data, I only used 2 variables
X1 and X2 so that the points can be plotted in a scatter plot. Using the IML
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procedure in SAS, we can implement the SMO algorithm to the simulated data.
Following is the confusion matrix of the test set using the SVM model.
After that, I used the build-in Logistic Regression model to Compare the two
different method. Fig.4. is the result of 2 models. As we can see, the two different
model almost have the same performance, which means the SVM model using
the SMO algorithm does work well with the simulated data.
Therefore, we are going to apply the model to a real-world data set.



Fig. 4. the confusion matrix of SVM model and Logistic Regression model

4.2 Credit Approval Dataset

The credit approval dataset is a very famous dataset in UCI machine learning
repository. concerns credit card applications. All attribute names and values have
been changed to meaningless symbols to protect confidentiality of the data.

Processing Data First of all, I read all the data into SAS, and realized that
there aren’t many observations with missing values. Thus, I simply deleted all
the observations with missing values.
Next, since there are only about 650 data left, I simply deleted all the character
variables rather than using dummy variable. For the ’T’ (True) and ’F’ (False)
variables, I changed them into ’1’ and ’0’.
Finally, I separated the data into training set (about 70%) and testing set (about
30%).

Building the model The IML read the data into a matrix and update every
time. I iterated 2000 times and got the result in SAS.
One thing I need to mention is that the way I computed the ’b’ parameter is as
follows:

b =
−min(wxi|yi = 1)−max(wxi|yi = −1)

2

Results After trained the model using the training set, I used the data in test-
ing set to see the result. However the result isn’t that satisfying comparing to
the Logistic Regression model.
The error rate is only 16.8% in the Logistic Regression model, but it is as high
as 35.5% in the simple linear SVM model.



Fig. 5. the parameters

Conclusion We are curious about why the SVM model doesn’t perform well in
this new data set.
First of all, the SMO algorithm we use is a simplified version, and we simply
iterate 2000 times which may affect the estimate of the parameters.
Secondly, the SVM model is only linear model, which may not be appropriate
when the data is more complicated. Therefore it may perform better if we use
some kernel tricks.
Finally, this model is sensitive to outliers since we didn’t processed the outliers.



Notes and Comments. The SVM is still powerful in today’s world and I have
learned a lot through this project. If I have more time, I would try to dig deeper
into the dual problem since that is the core part in SVM. and I am still learning
how to use gradient descent to solve this dual problem.
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