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In the last few years the resolution of NLP tasks with
architectures composed of neural models has taken vogue.
There are many advantages to using these approaches espe-
cially because there is no need to do features engineering.
In this paper, we make a survey of a Deep Learning archi-
tecture that propose a resolutive approach to some classical
tasks of the NLP. The Deep Learning architecture is based
on a cutting-edge model that exploits both word-level and
character-level representations through the combination of
bidirectional LSTM, CNN and CRF. This architecture has
provided cutting-edge performance in several sequential la-
beling activities for the English language. The architecture
that will be treated uses the same approach for the Italian
language. The same guideline is extended to perform a multi-
task learning involving PoS labeling and sentiment analysis.
The results show that the system performs well and achieves
good results in all activities. In some cases it exceeds the
best systems previously developed for Italian.

1 Background Motivation
In many scientific articles the Deep Learning architec-

tures and NLP tasks are treated. These articles use a tech-
nical vocabulary, sometimes understanding can be difficult.
At this point the question arises: How do they work? Why
have they achieved so much success? These have achieved
great success in recent years because there is no need to make
feature engineering. In Natural Language Processing (NLP)
several DL architectures have been proposed to solve many
tasks, from speech recognition to analysis. Many classic
NLP tasks, such as speech recognition (PoS) and Named En-
tity Recognition (NER) tags, can be solved as a sequence la-
beling problem. Traditional high-performance NLP methods
for sequence labeling are linear statistical models, includ-
ing random-field (CRF) and Hidden Markov (HMM) fields.
These methods are based on craft characteristics and spe-
cific activities / language resources that have a cost. Fur-

thermore, it makes it difficult to adapt the model to new
tasks, new domains or new languages. A proposed archi-
tecture [1](Ma and Hovy 2016) provides state-of-the-art se-
quence labeling. The method based on a neural network ar-
chitecture that benefits from the representation of words and
characters through the combination of bidirectional LSTM,
CNN and CRF. The method is able to achieve cutting-edge
performance in sequential labeling tasks for English without
the need to use craft features. NLP in Italian: PoS tagging of
tweets, NER and Super Sense Tagging (SST). there is a work
by [2](Basile, Semeraro and Cassotti 2017). In this docu-
ment, we describe a work very similar to the one mentioned
above [3](Basile, Semeraro and Cassotti 2017 seconda ver-
sione) Unlike the previous one there is the optimization of
the hyperpatameters one exploiting fold on the crossed vali-
dation. This work describes the architecture using a technical
language but at the same time as simple as possible. Section
2 will define the tasks we will deal with. Section 3 will define
the neural network architecture. In section 4 the data used to
do learning and testing. Section 5 will show the results ob-
tained and then finish with a brief conclusion.

Fig. 1: DL architecture sequence labeling



2 Tasks
In this section, known tasks of the NLP will be dealt with.
The tasks that we will deal with are: Part-of-speech tagging
(Pos Tagging), Named-entity recognition (NER), Super-
Sense Tagging (SST), other sentiment classification tasks
that will be discussed later.
In the work done each task is contextualized with a real ex-
ample. The decrees follow:

2.1 Pos Tagging of Tweets
The part of speech explains how a word is used in a sentence.
There are eight main parts of speech (nouns, pronouns, ad-
jectives, verbs, adverbs, prepositions, conjunctions and inter-
jections). POS tagging is a supervised learning solution that
uses features like the previous word, next word, is first letter
capitalized etc. NLTK has a function to get pos tags and it
works after tokenization process.
The most popular tag set is Penn Treebank tagset.
Most of the already trained taggers for English are trained on
this tag set, but in this work is used PoSTWITA. PoSTWITA
is a PoS Tagset buil on pourpose in 2016.
We apply this task to the world (or tokens) of tweets.
The goal of the task is to perform PoS tagging of tweets.
The task is more challenging than the classic PoS tagging
due to the short and the noisy nature of tweets.
For the evaluation we adopt the data set used during
EVALITA 2016 PoSTWITA.
The data set contains 6,438 tweets (114,967 tokens) for train-
ing and 300 tweets (4,759 tokens) for the test.
The metric used for evaluation is the classic coding preci-
sion: it is defined as the correct assignment number of the
PoS tag divided by the total number of tokens in the test
set. Participants can only provide one tag for each token.
All the best performing PoSTWITA systems are based on
deep neural networks and, in particular, on LSTM, more-
over, most systems use word or character ads as input to
their systems. It is important to underline that the best sys-
tem (ILC-CNR) [4](Cimino and Dell’Orletta, 2016) in PoST-
WITA uses a biLSTM and an RNN using both words and
character spells, also uses additional features based on the
morpho-syntactic category and spell checker. The good per-
formance of the proposed system probably depends on the
CRF layer and on the corpus used to construct the word ”em-
beddings”, but we will deal with this later.

2.2 NER task
Named Entity Recognition (NER) (also known as entity
chunking) is a subtask of the information extraction that
seeks to identify and classify named entities in the text into
predefined categories such as the names of people, organiza-
tions, places, time expressions , quantities, monetary values,
percentages, etc. Most of the research on NER systems has
been structured as a block of non-annotated text.
And producing in output an annotated block of text that
highlights the names of the entities.
An example: a person name consisting of a token, a two-
token company name and a time expression were detected

and classified with the NER.
Is taken into account the I-CAB 9 dataset used in the 2009
edition of EVALITA (Manuela Speranza 2009).
The I-CAB dataset consists of a set of manually annotated
news with four types of entities: GPE (geopolitics), LOC
(position), ORG (organization), FOR (person). The data set
contains 525 news for the training and 180 for the test for
a total number of 11,410 entities noted for the training and
4,966 entities for the tests.
The format in which we find the dataset it’s IOB2.
This format has the following standards: the tag B (for
”begin”) denotes the first token of a Entity named, I (for
”inside”) is used for all other tokens in a named entity and O
(for ”outside”) is used for all other words. The tags of type
Entity are: FOR (for Person), ORG (by organization), GPE
(by geopolitical entity) or LOC (by position).

2.3 Super Sense Tagging
Super-sense tagging (SST) is a Natural Language Process-
ing task that consists of annotating each significant entity in
text, like nouns, verbs, adjectives and adverbs, within a gen-
eral semantic taxonomy defined by the lexicographer classes
(called super-senses) .
SST can be considered as a half-way task between Named-
Entity Recognition (NER) and Word Sense Disambiguation
(WSD): it is an extension of NER, since it uses a larger set
of semantic categories, and it is an easier and more practi-
cal task with respect to WSD, that deals with very specific
senses.
Task materials A corpus for Super-sense tagging was created
from the Italian Syntactic-Semantic Treebank (ISST) by a
semi-automatic correction and conversion process, followed
by manual revision [LREC 2010]. ISST-SST (about 320,000
tokens) is freely available for the task and for research pur-
poses. It will be used for training and development. The
test will be performed on a smaller corpus from the Italian
Wikipedia.
This concerns the classic approach while in the specific case
that is the task taken into consideration: The dataset is tagged
using the IOB2 format as for the NER task and contains
about 276,000 tokens for training and about 50,000 for test-
ing.
The definition of this task was taken from the following
address: http://www.evalita.it/2011/tasks/
SST

2.4 Multi-task Learning
For address previous tasks there is an architecture that we in-
troduce later.
Now we introduce lastone task.
The architecture is extended for performing multi-task learn-
ing. The goal is jointly learn PoS-tag, polarity and irony.
First of all it is important to underline that PoS-tag is as-
signed to each token occurring in the sentence. The polarity
and the irony are assigned to the whole sentence.
Is followed a hard parameter sharing approach in which have
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some shared layers in the bottom of the network and task-
specific layers on the top. This architecture depends on the
particular sentiment analysis task that we want to perform.
The goal is solve four binary classification tasks: Subjectiv-
ity (true/false), positive polarity (true/false), negative polar-
ity (true/false) and irony (true/false). subsequently training a
classifier for these classes jointly with the PoS-tagging task.
Then we will see in particular how architecture is built to
address this task.

3 Representation
Regarding the representation of the text we use the word em-
beddings approach revisited with a features engeneering.
In the following sections the concept of word embeddings,
character embeddings and the revisited approach used in this
work will be discussed.

3.1 Word Embeddings
They are a distributed representation for text that is perhaps
one of the key breakthroughs for the impressive performance
of deep learning methods on challenging natural language
processing problems. A word embedding is a learned repre-
sentation for text where words that have the same meaning
have a similar representation.
Word embeddings are a class of techniques where individual
words are represented as real-valued vectors in a predefined
vector space. Each word is mapped to one vector and the
vector values are learned in a way that resembles a neural
network, and hence the technique is often lumped into the
field of deep learning.
Key to the approach is the idea of using a dense distributed
representation for each word.
Each word is represented by a real-valued vector, often tens
or hundreds of dimensions. This is contrasted to the thou-
sands or millions of dimensions required for sparse word
representations, such as a one-hot encoding. The distributed
representation is learned based on the usage of words. This
allows words that are used in similar ways to result in hav-
ing similar representations, naturally capturing their mean-
ing. This can be contrasted with the crisp but fragile rep-
resentation in a bag of words model where, unless explic-
itly managed, different words have different representations,
regardless of how they are used. Word embedding meth-
ods learn a real-valued vector representation for a predefined
fixed sized vocabulary from a corpus of text. The learn-
ing process is either joint with the neural network model
on some task, such as document classification, or is an un-
supervised process, using document statistics. The most
famous are GloVe, Word2vec. The definition of this ap-
proach was taken from the following address: https:
//machinelearningmastery.com.

3.1.1 Word Embeddings on this Work
The best model uses the publicly available 50-dimension
word embeddings released by [5] Collobert et al. (2011b)
2, which were trained on Wikipedia and the Reuters corpus

RCV-1. Two other sets of unpublished recordings have also
been tested, namely the GloVe spells by Stanford 3, spanning
6 billion words from Wikipedia and Web text [6](Pennington
et al., 2014) and Google word2vec embargments 4 formats
on 100 billion words from Google News [7](Mikolov et al.,
2013).
Furthermore, word-based word embeddings have been found
to work better, in fact using the GloVe program (Penning-
ton et al., 2014) publicly available and an internal program.
reimplementation 5 of the word2vec program [7](Mikolov et
al., 2013) to train word embeddings also on the RCV1 dataset
of Wikipedia and Reuters.

3.2 Character Embeddings
Xiang and Yann [8] introduced character embeddings and
character CNN, which will be discussed later.
In a character embedding model, the vector for a word is con-
structed from the character. Word for grams are shared by
words, these models are better than word embedding models
for word vocabulary - they can generate an embedding for
an word. Word embedding models like word2vec can not be
used to treat word atomically. Character-embedding mod-
els to be better than the word-embedding models for words
that occur infrequently since the character word embedding
models in contrast suffer from a lack of sufficient training
opportunity for infrequent words.

3.2.1 Character Embeddings on this Work
It starts by randomizing a search table with values de-
rived from a uniform distribution with interval [−0,5,0.5] to
generate an embedding of 25-dimensional characters. The
character set includes everything unique characters in the
[9]CoNLL-2003 data set 8 plus special tokens PADDING
and CONDITION. The PADDING token is used for the CNN
and the UNKNOWN token is used for all other characters
(which appear in OntoNotes). For all experiments, the same
set of random joints was used.

3.3 Additional Word-level Features
In this section are described additional methodologies ap-
plied is features engennering.
The first apporach it focuses on uppercase information.
The uppercase information is deleted during the embedding
word search, the Collobert method is evaluated to use a
separate search table for add to the capitalization function
with the following options: allcaps, upperInitial, lowercase,
mixedCaps, noinfo. [5](Collobert et al., 2011b).
The second approach it focuses on lexicon.
Most state of the art NER systems make use of lexicons as a
form of external knowledge.
For each of the four categories (Person, Organization, Lo-
cation,Misc) defined by the CoNLL 2003 NER shared task,
is compiled a list of known named entities from DBpedia,
by extracting all descendants of DB-pedia types correspond-
ing to the CoNLL categories. No separate lexis were built
for the OntoNotes (https://catalog.ldc.upenn.
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edu/LDC2013T19) tag set because the matches between
the DBpedia (https://catalog.ldc.upenn.edu/
LDC2013T19) categories and its tags could not be found
in many cases. Furthermore, for each item first removed the
brackets and all the text contained inside, then the stripped
final punctuation. For each category of vocabularies, it is
match every n-gram (up to the length of the longest vocabu-
lary) with respect to the vocabulary. A game it is successful
when the n-gram corresponds to the prefix o suffix of an en-
try and is at least half the length of the entrance. Because of
the high potential of ous matches, for all categories except
Person , it is discard partial lots of less than 2 tokens. When
there are multiple overlapping correspondences inside in the
same category, is prefered exact matches compared to test
matches, and then shorter longer matches matches and lastly
matches in the sentence over the next games. All games are
insensitive houses. For each token in the game, the function
is coded in BIOES annotation. indicating the position of the
token in the matched entry. In other words,B will not ap-
pear in a suffix only partial match, and E will not appear in a
prefix-only partial match.

3.4 Additional Character-level Features
A search table is used to generate a 4-dimensional vector
representing the type of character (superior case, minuscule,
punctuation, other).
The construction of the embeddings was taken by
the following source:https://www.aclweb.org/
anthology/Q16-1026.

Fig. 2: Character-Embedding lev.

4 Architecture
After dealing with the tasks on which we will work, the used
architecture will be introduced to the used representation.The
architectures used will first be introduced and then their use
in the work examined will be contextualised.
The architecture is sketched in Fig.1: The input level of
the Convolutional Neural Network (CNN) is represented by
the character-level representation of which we have spoken
previously. A dropout layer [10](Srivastava et al. 2014)
with convolution and max pooling is applied before feed-
ing the CNN with character embeddings. Then, the charac-

ter embeddings are concatenated with the word embeddings
to form the input for the Bi-directional LSTM (bi-LSTM)
layer, that we will introduce better later, as sketched in Fig.
2. The dropout layer is also applied to output vectors from
the LSTM layer. The output layer is based on Conditional
Random Fields (CRF) and it modifies the output vectors of
the LSTM in order to find the best output sequence. The
initial pourpose will always be followed, is treatment of the
topics with lexicon easy to understand.

4.1 CNN
In this section we speak of Extracting of Character Features
Using a Convolutional Neural Network (CNN).

4.1.1 What’s CNN?
For an easy description we can star with definition of convo-
lution. The for me easiest way to understand a convolution
is by thinking of it as a sliding window function applied to a
matrix. The matrix can represent anything: pixels of an im-
age, words, characters.
Each entry of start matrix that corresponds to one pixel, word
or character, it can have a value. The sliding window is called
a kernel, filter, or feature detector. We use a nm filter, mul-
tiply its values element-wise with the original matrix, then
sum them up. To get the full convolution we do this for each
element by sliding the filter over the whole matrix.
Taking the difference between a pixel, word or character and
its neighbors detects information.
Now we know what convolutions are. But what about CNNs?
CNNs are basically just several layers of convolutions with
nonlinear activation functions like ReLU or tanh applied to
the results. In a classic feedforward neural network we con-
nect each input neuron to each output neuron in the next
layer. That’s also called a fully connected layer. In CNNs
we do not do that. Instead, we use convolutions over the in-
put layer to compute the output. This results in local connec-
tions, where each region of the input is connected to a neuron
in the output. Each layer applies different filters, typically
hundreds or thousands and combines their results. There’s
also something called pooling (subsampling) layers.
Pooling layers subsample their input. The most common
way to do pooling it to apply a max operation to the result
of each filter. In NLP we typically are apply pooling over the
complete output, yielding just a single number for each filter.
One property of pooling is that it provides a fixed size output
matrix, which typically is required for classification.
Pooling also reduces the output dimensionality but (hope-
fully) keeps the most salient information. You can think of
each filter as detecting a specific feature, such as detecting
if the sentence contains a negation like not amazing for ex-
ample. If this phrase occurs somewhere in the sentence, the
result of applying the filter to that region will yield a large
value, but a small value in other regions. By performing the
max operation you are keeping information about whether or
not the feature appeared in the sentence, but you are losing
information about where exactly it appeared.
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4.1.2 How in NLP?
In the case of a NLP tasks: each row of the matrix one to-
ken, typically a word or character like our work. Word is a
word. Typically, these vectors are word embeddings (low-
dimensional representations) like word2vec or GloVe, but
they could also be one-hot vectors that index the word into a
vocabulary. For a 10 word sentence using a 100-dimensional
embedding we would have a 10100 matrix as our input. For
each word it’s employ a convolution and a max layer to ex-
tract a new feature vector from the per-character feature vec-
tors such as character embeddings and (optionally) character
type. Words are padded with a number of special PADDING
characters on both sides depending on the window size of the
CNN. The hyper-parameters of the CNN are the window size
and the output vector size.
The input level of the Convolutional Neural Network (CNN)
is represented by the character-level representation [8](Chiu
and Nichols 2015). A dropout layer [10](Srivastava et al.
2014) with convolution and max pooling is applied [8](Chiu
and Nichols 2015 sec. 1) obtaining a fixed length feature
vector from character-level features. This is the feeding of
CNN, which as said will return fixed length feature vector.
Then, the character embeddings are concatenated with the
word embeddings to form the input for the Bi-directional
LSTM (bi-LSTM). Therefore, for each word, these vectors
are concatenated and fed to the Bi-LSTM, which we will talk
about later.

Fig. 3: CNN and Bi-LSTM

4.2 LSTM
Long Short Term Memory networks usually just
called [11]LSTMs are a special kind of RNN, capable
of learning long-term dependencies.
LSTMs are explicitly designed to avoid the long-term
dependency problem. Remembering information for long
periods of time is practically their default behavior.
LSTMs help preserve the error that can be backpropagated
through time and layers. By maintaining a more constant er-
ror, they allow recurrent nets to continue to learn over many
time steps (over 1000), thereby opening a channel to link

causes and effects remotely. LSTMs contain information
outside the normal flow of the recurrent network in a gated
cell. Information can be stored in, written to, or read from a
cell. The cell makes decisions about what to store, and when
to allow reads, writes and erasures, via gates that open and
close.
Memory Cell? This is a special neuron for memorizing
long-term dependencies. LSTM contains an internal state
variable which is passed from one cell to the other and
modified by Operation Gates.
LSTM is smart enough to determine how long to hold onto
old information, when to remember and forget, and how to
make connections between old memory with the new input.
This is a brief description of what an LSTM is, the architec-
ture taken into consideration uses a Bi-LSTM.

4.3 Bi-LSTM
For this work a veriante of LSTM was used, it is called
Bi-LSTM. In this section the Bi-LSTM is introduced and
a general description is made and in the second part the
application in this work is treated.

4.3.1 What’s Bi-LSTM?
Bi-LSTM is variety of neural network based models. These
models include LSTM networks, bidirectional LSTM net-
works (BI-LSTM). In sequence tagging task, we have ac-
cess to both past and future input features for a given time,
we can thus utilize a bidirectional LSTM network as pro-
posed in [12](Graves et al., 2013). In doing so, we can effi-
ciently make use of past features (via forward states) and fu-
ture features (via backward states) for a specific time frame.
We train bidirectional LSTM networks using backpropaga-
tion through time (BPTT). The forward and backward passes
over the unfolded network over time are carried out in a sim-
ilar way to regular network forward and backward passes,
except that we need to unfold the hidden states for all time
steps. We also need a special treatment at the beginning and
the end of the data points.

4.3.2 How in this work?
After having taken in feeding concatenated vectors (see pre-
vious section). There is a split:

The output vectors are fed to a second Bi-LSTM level.
The output vectors are fed to CRF level.

In this section we only deal with the second level of Bi-
LSTM.
The dropout layer is also applied to output vectors from the
second Bi-LSTM layer. This new layer based on a bi-LSTM
is added using the same dimension of the first LSTM layer.
Then, a dropout layer is applied and the final classes proba-
bilities are computed by a binary cross entropy function for
each class. In this case the last layer does not predict a tag
for each token, but it predicts only one tag 5 for each clas-



sification task (subjectivity, positive, negative, irony). More-
over, as we have already mentioned, the output of the first
bi-LSTM layer is the input of the CRF layer to predict PoS
tags, while each binary feeling activity is implemented by a
new one LSTM level and cross-entropy function.

Fig. 4: Input level of DL Architecture

4.4 CRF
There is way to make use of neighbor tag information in
predicting current tags. it’s focus on sentence level instead
of individual positions, thus leading to Conditional Random
Fields (CRF) models [13](Lafferty et al., 2001) . Note that
the inputs and outputs are directly connected, as opposed
to LSTM and bidirectional LSTM networks where memory
cells/recurrent components are employed. It has been shown
that CRFs can produce higher tagging accuracy in general.

4.4.1 How we use?
We use the CRF level, parallel to the second Bi-LSTM level,
for predicting PoS-tags. This level will feed the aforemen-
tioned vectors and provide predictions as output.

4.4.2 Why use?
Using output layer that is based on Conditional Random
Fields (CRF) it modifies the output vectors of the LSTM in
order to find the best output sequence. The CRF layer is
useful for learning correlations between labels in neighbor-
hoods.

4.5 Multi-task learning
Previously we had talked about the existence of two parallel
models located on the second level. CRF has been addressed
previously.Now we focus on the second bi-LSTM.
As already mentioned, the dropout layer is also applied to
output vectors from the second Bi-LSTM layer. This new
layer based on a bi-LSTM is added using the same dimension
of the first LSTM layer. Then, a dropout layer is applied and
the final classes probabilities are computed by a binary cross
entropy function for each class.In this case the last layer does
not predict a tag for each token, but it predicts only one tag
5 for each classification task (subjectivity, positive, negative,
irony).

Fig. 5: DL architecture for multi-task learning.

5 Datasets
In this section we take care of the data that have been used
to train or test the architecture. We want to emphasize that
many tasks are performed using Italian datasets.
In particular we exploit data coming from the last
edition (2016) of EVALITAhttps://github.com/
evalita2016/data and the previous ones EVALITA
https://github.com/evalita2011 is a periodic
evaluation campaign of NLP and speech tools for the Ital-
ian language.
Other datasets are instead of common domain.

5.1 Dataset for Pos-Tagging
For the evaluation we adopt the dataset used during
EVALITA 2016. The dataset contains 6,438 tweets (114,967
tokens) for training and 300 tweets (4,759 tokens) for testing.

The only used resource is a corpus of 70M tweets randomly
extracted from Twita, a collection of about 800M tweets, for
building the word embeddings.

5.2 Dataset for NER
For NER task is used I-CAB dataset. The I-CAB dataset
consists of a set of news manually annotated with four
kinds of entities: GPE (geo-political), LOC (location), ORG
(organization) and PER (person). The dataset contains 525
news for training and 180 for testing for a total number of
11,410 annotated entities for training and 4,966 ones for
testing. The dataset is provided in the IOB2 format: the tag
B (for begin) denotes the first token of a Named Entity, I (for
inside) is used for all other tokens in a Named Entity, and
O (for outside) is used for all other words. The Entity type
tags are: PER (for Person), ORG (for Organization), GPE
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(for GeoPolitical Entity), or LOC (for Location).
Next image is an example of the output of the NER task.
We can see that each token has been labeled with the IOB2
and I-CAB format.

5.3 Dataset for Super Sense Tagging
The dataset has been tagged using the IOB2 format as for the
NER task and contains about 276,000 tokens for training and
about 50,000 for testing. In training each token occurring in
WordNet is annotated with its super sense.

5.4 Dataset for Word Embeddings
The building of word embeddings by exploiting the Italian
version of Wikipedia. Word2vec [7](Mikolov et al. 2013)
is used for creating embeddings with a dimension of 300;
removing all words that have less than 40 occurrences in
Wikipedia. For the other parameters, is adopted the standard
values provided by word2vec.

5.5 Dataset for Multi-task Evaluation
Sentiment data are taken from SENTIPOLC. SENTIPOC
(SENTIment POLarity Classification) is a sentiment analy-
sis task where systems are required to automatically annotate
tweets with a tuple of boolean values indicating the messages
subjectivity, its polarity (positive or negative), and whether it
is ironic or not. The SENTIPOLC training set consists of
7,410 tweets (6,412 are shared with the PoSTWITA task),
while the test set contains 2,000 tweets (300 are shared with
PoST-WITA).

6 Parameters
In this section the architectural parameters will be described.
It is also important to note that in the past was already pro-
posed an evaluation on these tasks [3](Basile, Semeraro, and

Cassotti 2017) using the same architecture, but without cor-
rectly optimizing hyperparameters due to the lack of a vali-
dation set. In this paper, second version, is described a proce-
dure for hyperparameters optimization based on k-fold cross-
validation.
Furthermore, together with the parameters and the results ob-
tained in each task, results of systems that approach the same
tasks in different ways will also be shown.
We start talking about the Bi-LSTM and then move on to the
individual cases.In the following subsections follow a more
detailed description.

6.1 Parameters of Bi-LSTM

Fig. 6: This is a param of Bi-LSTM.

The perform parameters optimization using 5-fold cross-
validation on training data since EVALITA does not pro-
vide a validation set. In particular, is perform optimization
in order to choose the best optimization algorithm evaluat-
ing among Adadelta, Adagrad, Adam and SGD. Regarding
SGD, is test several values of the initial learning rate in the
set [0.01,0.0125,0.15] and values for the decay rate in the set
[0.01,0.05,0.1]. Moreover, optimize the number of epochs
(setting the maximum number of epochs to 60). Results of
the optimization procedure are reported in next table. Re-
sults about SGD parameters are removed since they give rise
to lower performance.

Fig. 7: This is a result of Bi-LSTM optimization.

6.2 Parameters & Results on Pos-Tag
In [3](Basile, Semeraro and Cassotti 2017), we have same
architecture and different parameters.
Accuracy reported of .9334 using the same system, but run-
ning more epochs (100 epochs).
In this work, the maximum number of epochs to 60 dur-
ing the optimization step in order to reduce the computation
time. Nevertheless, results prove the effectiveness of the pro-
posed architecture without exploiting task/language specific
resources. The only used resource is a corpus of 70M tweets



randomly extracted from Twita, a collection of about 800M
tweets, for building the word embeddings.

Fig. 8: There are a results of Pos-Tagging of of some recent works
PoSTWITA.

6.3 Parameters & Results on NER
For the official evaluation of system results the organizers of
evalita 2009 used the scorer made available by CONLL for
the 2002 Shared Task, which can be freely downloaded from
the CONLL website.
With respect to the results submitted by the participants
(each participant was allowed to submit up to two runs), the
CONLL scorer computes the following evaluation measures:
Precision, Recall, and F-Measure (FB1).
Precision indicates the percentage of correct positive predic-
tions and is computed as the ratio between the number of
Named Entities correctly identified by the system (True Pos-
itive) and the total number of Named Entities identified by
the system (True Positive plus False Positive). Precision =
TP / (TP + FP)
Recall indicates the percentage of positive cases recognized
by the system and is computed as the ratio between the
number of Named Entities correctly identified by the system
(True Positive) and the number of Named Entities that the
system was expected to recognize (True Positive plus False
Negative).Recall = TP / (TP + FN)
F-Measure, the weighted harmonic mean of Precision and
Recall computed as has been used for the official ranking.
FB1= 2 (Precision Recall) / (Precision + Recall)
In next Table, where the system (DL-ita) is compared with
respect to the other EVALITA 2009 participants.
The system outperforms the first three EVALITA participants
thanks to the best performance in recall.
All the first three participants adopt classical classification
methods: the first system combines two classifiers (HMM
and CRF), the second participant uses a Perceptron algo-
rithm, while the third partecipant adopts Support Vector Ma-
chine and feature selection.
We can conclude that the DL architecture is more effective in
model generalization and in tackling the data sparsity prob-
lem. This behavior is supported by the good performance
in recognizing LOC entities. In fact, the LOC class repre-
sents about the 3% of annotated entities in both training and
test. Other two systems able to overcome the EVALITA 2009
participants have been proposed in the literature. The for-
mer (Nguyen and Moschitti 2012) achieves the 84.33% of F1
by using re-ranking techniques and the combination of two
state of the art NER learning algorithms: conditional ran-

dom fields and support vector machines. The latter exploits
a Deep Neural Network with a log-likelihood cost function
and a recurrent feedback mechanism to ensure the dependen-
cies between the output tags. This system is able to achieve
the 82.81% of F1, a performance comparable with our DL
architecture. This is what the article says that I am consider-
ing [3].

6.4 Parameters & Results on SS Tagging
The dataset, like descrciption in previous section, has been
tagged using the IOB2 format as for the NER task and con-
tains about 276,000 tokens for training and about 50,000 for
testing. A training sample each token occurring in WordNet
is annotated with its super sense. The metric adopted for the
evaluation is the F1. Results of the evaluation are reported in
next Table.

As word embeddings, is used the same ones adopted for the
NER task and built upon Wikipedia with lowercase. More-
over, is exploited PoS-tags as additional features.
The system (DL-ita) is very close to the best system in
EVALITA 2011 SST task UNIBA-SVMcat. This system
combines lexical and distributional features through an SVM
classifier, in particular it exploits specific features such us:
lemma, contextual PoS-tags, the super-sense assigned to the
most frequent sense of the word and information about the
grammatical conjugation of verbs. We plan to introduce this
kind of features into the DL system in order to understand if
this difference in performance still emerges. The second sys-
tem (UNIPI-run3) exploits lexical features and a Maximum
Entropy classifier.
This is what the article says that I am considering [3].

6.5 Parameters & Results on Multi-task Evaluation
As already mentioned in the previous section sentiment
data are taken from SENTIPOLC. SENTIPOC (SENTIment
POLarity Classification) is a sentiment analysis task where
systems are required to automatically annotate tweets
with a tuple of boolean values indicating the messages
subjectivity, its polarity (positive or negative), and whether
it is ironic or not. Without dwelling on the characteristics
of SENTIPOLC, already dealt with. The traininig of
multi-task architecture use 6,412 tweets, while the accuracy
of PoS-tag is evaluated on 300 tweets and the performance
on SENTIPOLC is computed on 2,000 tweets.



Fig. 9: This is result of challenge PoSTWITA task using the multi-
task architecture

But beware as the results show that the PoS tag is not able
to exploit the information on polarity and irony to improve
performance.

In the next table we can see the results of SENTIPOLC task.
Evaluation of SENTIPOLC task, systems are evaluated on
the assignment of a 0 or 1 value to the subjectivity field. A
response is considered plainly correct or wrong when com-
pared to the gold standard annotation.
The same speech was made for the irony task.
For polarity classification: the coding system allows for four
combinations of opos and oneg values: 10 (positive polarity),
01 (negative polarity), 11 (mixed polarity), 00 (no polarity).
Accordingly, we evaluate positive and negative polarity in-
dependently by computing precision, recall and F-score for
both classes (0 and 1). The F-score for the two polarity
classes is the average of the F-scores of the respective pairs.
Finally, the overall F-score for second subtask is given by the
average of the F-scores of the two polarities.
Regarding the SENTIPOLC task, results show that the multi-
task architecture is able to improve its performance in the
irony task.

Fig. 10: Results for the SENTIPOLC task

We can see that the performance decreases in the polarity
task in fact, the values are around 0.6 .
In conclusion, information about the PoS-tag is useful for
irony, but not in the subjective and polarity tasks.
It is not easy to interpret the DL architecture and this is made
even more difficult by the multi-task learning.
Also , are reports results for the systems at the intersection

between the first three systems of each SENTIPOLC sub-
task. The system (DL-ita-ML) is able to achieve good re-
sults in each subtask and ranks 4 out of 18 in the subjec-
tive task, 6 out of 25 in the polarity task and 5 out of 12 in
the irony task. The best system in the subjective task, Uni-
tor1.u [14](Castellucci, Croce, and Basili 2016), reports also
good performance in the polarity task but poor performance
in the irony task.
The best system in the polarity task, UniPI.2, adopts Con-
volutional Neural Networks as Unitor1.u and exploits both
word embeddings and Sentiment Specific word embeddings.
This system ranks eighth in the subjective task and does not
participate in the irony one.
Finally, the best system in the irony task, tweet2check16.c, is
an industrial system which combines many different classi-
fiers, each of which is built by using different machine learn-
ing algorithms and implementing different features.
In conclusion, the multi-task architecture obtains good per-
formance in all Sentiment Polarity Classification subtasks.
However, it does not achieve the best performance in any
specific task. Moreover, we observe that the information
about PoS-tags is useful in the irony subtask, while the use
of polarity information in the PoS-tag results in a slight de-
crease in accuracy.

7 Conclusion
In this paper is proposed a easy review of an evaluation of a
state of the art DL architecture in the context of language in
specific Italian considering some sequence labeling task.
In particular, are considered three sequence labeling
tasks: PoS-tagging of tweets, Named Entity Recogni-
tion and Super-Sense Tagging and a multi-task learning
architecture involving PoS-tagging and sentiment anal-
ysis. All tasks exploit data coming from EVALITA.
http://www.evalita.it.
This system is able to achieve good performance in all the
tasks without using hand crafted features.

Analyzing the results of this system and other systems gen-
erally system porposed in EVALITA competitions.
For each tasks we observe that the system is able to achieve
state of the art performance for the Italian language in all the
sequence labeling tasks.
This proves the effectiveness of the DL architecture in a dif-
ferent language in this case Italian - without using language
specific features.
Instead, many systems with which the comparison was made
use massively language specific features.
While the multi-task learning, this architecture is able to
achieve good performance in each subtask (subjectivity, po-
larity and irony) using the same architecture.
In addition, we can observe, the multi-task learning results
show that the irony task benefits from the information
provided by PoS-tags.

Furthermore, we need to underline the winning choice of the
authors [2] of this work as regards the construction of the in-

http://www.evalita.it


put.
Because most word embedding methods take a word as a ba-
sic unit and learn embeddings according to words external
contexts, ignoring the internal structures of words.
However, in some languages such as Italian or Chinese, a
word is usually composed of several characters and contains
rich internal information.
The semantic meaning of a word is also related to the mean-
ings of its composing characters.
Instead in this work a double level input was used as previ-
ously described.
This added to the DL architecture provides good perfor-
mance.
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