
Explanation to the first thirty problems

from Project Euler with Python 3

Max Halford

Project Euler is a good way to learn basic number theory, to get your
imagination going and to learn a new programming language. If you can solve
the first hundred problems then you can solve any problem, as long as you
keep being curious and you use your imagination, personally I decided to work
on other styles of projects, there isn’t just number theory out there! However
solving number theory problems is a good way to learn a programming
language : you need to be rigorous and tidy. Most solutions require smart
algorithms and not brute force approaches. Google is your best friend when
you know what to do but you don’t know how to write it, or when you don’t
understand the code you’re reading. I will not babysit the reader but to the
contrary assume that he knows how to google ”Python <insert command>”,
I am not being harsh : knowing how to find documentation when coding is
of the utmost importance because you mostly have to teach yourself notions,
you have to be self-educated. I would recommend approaching challenging
problems with pen and paper and maybe some mathematical research. The
association between human ingenuity and the computational power of our
machines can produce wonderful results, as long as one doesn’t lean on
the latter. Python provides many coding styles and paradigms, googling
”PEP 8” and ”Google Python Style Guide” will make pick up good habits
early on. Keep your code simple, it has to be readable by everyone. Assign
comprehensible names to your variables and parameters. Don’t reinvent the
wheel, the Python community is very large and modules have been written
for a lot of things, use them. Internet isn’t always right, for example one
liners are not a good thing : they are difficult to read afterwards. In a perfect
world reading your code should feel like reading a book, keep that in mind.
Don’t be frightened to go on internetand find the solutions to problems, it’s
actually counterproductive to search for answers for too long, time is precious
and there are too many things to cover. All the code is available here:

https://github.com/MaxHalford/Project-Euler
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1 Multiples of 3 and 5

A question that often comes up with Python is ”What is the best way to go
through a list?”. Problematically there are many answers and it all comes
down to personal preferences. The two main choices are Map-Reduce-Filter-
Lambda http://www.python-course.eu/lambda.php and list comprehen-
sions http://www.python-course.eu/list_comprehension.php. I would
suggest reading up on both approaches, it is always good to know what tools
are at your disposal without having to be a black belt at them. I mostly
use list comprehensions, they are, in my opinion, more comprehensible and
flexible. The problem is straightforward with a list comprehension : build a
list bounded by 1 and 999 with elements being divible by 3 or 5 and sum up
all the elements.

2 Even Fibonacci numbers

When you read a problem for the first time do as much research as you need
on the topics of the problem. In this case Fibonacci numbers are relatively
famous but will find some rather less famous concepts later that will require
some looking around. After some pondering one notices that a number in the
Fibonacci sequence is only defined by the two numbers preceding it. What
results from this observation is that it is useless to store the sequence, but
instead we should go through it and pick the numbers we want (in this case
they have to be even). We use the property of the sequence in the following
algorithm :

• Let α and β be adjacent numbers in the sequence.
• β′ becomes the following number in the sequence : α+ β.
• α′ becomes β.

3 Largest prime factor

It is a well known theorem that any number can be written as the product
of prime numbers. Hence any number divided by all its factors successively
will return 1. So what we can do is, for a given integer n, go through every
integer k inferior to it and superior to 1 and check if n mod k = 0. If it isn’t
then increment k and try again. When it is then k is a factor of n, so we
store it and start over the same process for n/k. The neat thing with this
algorithm is that you do not have to check if k is prime. Indeed k will be
checked before 2k, 3k, 4k etcetera.
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4 Largest palindrome product

The easiest way to check if a number, or any string for that
matter, is a palindrome, is to compare it with its reverse. I
would suggest reading http://forums.udacity.com/questions/2017002/

python-101-unit-1-understanding-indices-and-slicing to learn use-
ful dodges instead of reinventing the wheel. Now that we have a function to
check if a number is palindrome, we need to apply it on every product of two 3-
digit numbers in the descending order (because we are looking for the biggest
palindrome), hence the iteration through {999, . . . , 100} × {999, . . . , 100}.
Notice how easily a two dimensional matrix is defined in one line with a list
comprehension.

5 Smallest multiple

Recursion is a concept that can not be avoided when programming, I would
suggest googling it if you are not familiar with it. It is easy enough to check
for a given integer n from 1 till k (in our case 20), we simply go through the
list and check the divisibility. Now we have to find an integer that satisfies
the previous algorithm for k = 20. A brute force approach is to iterate every
integer one by one, but we quickly realize that the algorithm takes for ever.
It takes some insight to notice that the integer n that verifies the algorithm
for k is a factor of the integer m, hence when looking for m we can increment
by n instead of 1. However efficient this insight is, it is not intuitive, try
some cases on a piece of paper. An example that comes to mind is this : 6 is
divisible by 1, 2 and 3. 24 is divisible by 1, 2, 3 and 4. 6 is a factor of 24
hence we only look for the candidates 12, 18 and 24 when searching for the
smallest integer divisible by 1, 2, 3 and 4.

6 Sum square difference

I’ll be honest, if you don’t konw how to do this problem, it is either than you
need to learn the basics of programming or that you’re not motivated. This
is good opportunity to learn some more list comprehension synthax. The
solution to this problem is straightforward, indeed we only have to iterate
through a list of integers and do some basic operations on them.
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7 10001st prime

I would strongly recommend reading up on prime number theory, it is a
core element of number theory and it is not an easy concept to deal with in
computer science (actually that’s the reason why it is used in cryptography).
Indeed, the algorithms used to deal with primes require a lot of power,
even without brute force. Again, there are many to solve this problem,
the upper bound (10001) is relatively low so we can use an unsophisticated
algorithm. To check if an integer is prime, one can go through every integer
in {2, . . . ,

√
n} and check if it divides n (going above

√
n is pointless because

you’ve implicitly checked them when going through the smaller integers).
Now that we have a tool to check if an integer is a prime we can through
the uneven integers (even numbers apart from 2 are not prime) and use the
tool. Once we have 10001 primes we return the last one. On a sidenote,
storing the primes is overkill, it’s fine for 10001 primes but you might want
to change the script (just like in Problem 2) to only store the latest prime.

8 Largest product in a series

This is a good exercice to master ranges in Python (the last element of the
range not being included is an easy concept to forget at first). First of all
we have to copy/paste the number into a Python script and edit it so that
it’s considered a prime. In my solution I quoted it and made it readible
by adding ’/’ at the end of the lines (Python thinks it will be one single
continuous line). You could also use list(map(int,str(n))) to tranform
n into a list. The easiest way to find a maximum is to iterate through a list
and compare to an initial value, if we find a bigger ”thing” we replace the
initial value by the ”thing”. In our case the ”thing” is a thirteen elements
product. Thus we need two loops, one going through every element i, the
other going from i to i+ 12.

9 Special Pythagorean triplet

It is always important to know just how many steps are needed to get to
the answer. In this case there are two : firstly imposing two criterias on
an integer triplet and secondly computing pythagorean triplets. However,
after a bit of coding and reflexion we should notice : if we have a and b,
we automatically have c because the three have to sum to 1000! Also, the
Pythagoras theorem (a2 + b2 = c2) imposes on c to be bigger than a and b
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(think of a triangle and its sides and the previous statement will seem clear).
In mathematical terms the first observation says that c = 1000− a− b. The
second says that a and b can only be as big as 500 (half a thousand). Let’s
prove this statement ad absurdum, if a > 500 and c > a, then a+ c > 1000,
which we don’t want. Finally we can notice that a and b are interchangeable
(by commutativity of the sum), thus we can iterate through {a, . . . , 500}
for b to avoid repeating triplets. Now that we have understood all this the
coding is simple, we go through appropriate triplets and check if the triplets
verify a2 + b2 = c2.

10 Summation of primes

This problem is the perfect example for using the sieve of Eratosthenes,
which is an efficient algorithm to find all the prime numbers up to a given
bound. It uses the following intuition : if we know for certain that k is prime,
then all the multiples of k are not prime. We can use this property in the
following way :

• Take a list of n consecutive booleans set to True (2 million in our case).
• Go through every element.
• If it is True (prime) then mark all its multiples to False.
• If it is False (not prime) then check the next element.

Finally we end up with of a list of True and Falses, sum up the integers
that are True.

11 Largest product in a grid

Some problems don’t require elegant dodges but simply clean algorithms,
this is one of them. First of all there are four possible products : a column
(↓), a line (→) and two diagonals (↘ and ↗). I didn’t add the symbols to
be pedantic : the way they point is the way I multiplied the cells of the grid,
just ”go the way” that seems most natural to you. What we want to do is
straightforward, we compute every kind of product for each cell of the grid.
However before doing the previous the given grid has to be inserted into a
two-dimensional array, first by copy/pasting and converting to string the
given grid then by adding every line to an array. We also have to be careful
not to try and compute inapropriate products, for example a line product
on the last cell of a line of the grid. I found that getting the array into place

7



was harder than finding the largest product, mastering string operations is
crucial. In my solution there are three string operations :

• .strip() removes the implicit carriage returns at the end of every line.
• .splitlines() converts a multiline string into individual strings.
• .split() separates a string into a list of strings based on a given separator.

12 Highly divisible triangular number

It is fairly obvious that the nth triangular number is the sum of an arithmetic
sequence : n(n+ 1)/2. We can make two observations : one and only one of
n and n+ 1 is divisible by 2 and they don’t share any prime factors. Thus
we can write :

n =
s∏

i=1

pjii and n+ 1 =
t∏

i=1

qkii where p and q are primes.

Thus the number of factors of a triangle number is:

(j1)(j2 + 1) . . . (js + 1)(k1 + 1)(k2 + 1) . . . (kt + 1) = j1

s∏
i=2

(ji + 1)

t∏
i=1

(ki + 1)

I realize that the previous equation is a lot to take in so I’ll explain. First of
all, if an integer n has s prime factors p, then any product of these primes
(each to any power from 0 to j) is a factor of n (this is the most important
insight to understand). The previous statement induces that the number
of factors of an integer is (j1 + 1)(j2 + 1) . . . (js + 1). The reason for which
there is a ”+ 1” is that we have to include 0 to the powers of the primes.
However a triangular number is equal to n(n+ 1)/2, not to n(n+ 1), which
means that we have to neglect a power of two in the factorization of n or
n+ 1 (depending on which is even. This explains why the first element of
the product is (j1) and not (j1 + 1).
Now that we have the theory we can put it into code. Firstly we need an
algorithm to give the number of divisors of a given integer n. My algorithm
is a bit complicated but it exactly translates what was said above. We begin
by dividing by 2 n until it is odd and count how many times we did it (j
or k in the previous paragraph). We then divide n (which is now odd) by
its odd prime factors until it equals 1, in this process we also count how
many times we can divide n by the odd number. The code divisors =

divisors * (count + 1) is our insight translated to code : we multiply
the number of divisors we have by the number of times we can divide n
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by one of its prime factors. Next we have to iterate through every integer
until numDivisors(n)× numDivisors(n+1) is over 500. Finally our answer
is simply n(n+ 1)/2.
This is the first problem where we looked at our problem under a different
angle. We thought about what equation represents a triangular numbers and
from there worked on the equation, which is a subtle difference and is often
the case when solving hard problems.

13 Large sum

We can use the code used in Problem 11. First of all we copy/paste the
given number, strip the carriage returns. Then we convert every line to an
integer which we append to an array. Finally, after summing the array and
converting the sum (an integer) to string, we can simply get the last 10 digits
by slicing it. Slicing in Python is an important tool to master, it makes
string operations very simple, if you don’t understand it by now go back to
the link in Problem 4.

14 Longest Collatz sequence

The Collatz Problem is a fascinating, unproved, conjecture. Let’s say that
C(n) returns a sequence of integers, beginning with n and ending with 1,
every integer following the rules given by the Collatz sequence :

• n becomes n/2 if n is even.
• n becomes 3n+ 1 if n is odd.

We are looking for the biggest C(n) (denoted |C(n)|) for n in {1, . . . , 1000000}.
Every n returns a unique Collatz sequence so we have to check each C(n).
The first thing that comes to mind is to compute the length of each C(n)
for each n, however this takes a very long time. Consider the following
insight : the first element of C(10) is 5, yet we have already computed
C(5), thus |C(10)| = |C(5)|+ 1. This is wonderful, when computing C(n)
we can stop once it returns an element k for which C(k) has already been
computed. We then have |C(n)| = |C(k)|+ l where l is number of elements
between n and k. This is principle is called memoization, it avoid repeating
steps already computed. It finds applications in everything that is recursive.
For example when recursively computing factorial(n) we can stop if we
computed factorial(n-k), indeed n! = n!

(n−k)! × (n− k)!.
Back to the problem, the memoization doesn’t change much to the brute
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force algorithm described previously. Only now before changing n we have
to if n is in the keys of a dictionary (also known as a hash) instantiated
formerly. If it is then we can stop and we have the length of the Collatz
sequence beginning with n. If it isn’t then we keep going. In any case when
the length of the sequence is found we append it to the dictionary so that
we don’t have to the computation again if we find n in another sequence.

15 Lattice paths

There are two ways of solving this problem. On the one hand we could use
a brute force recursive algorithm by computing the number of routes for
subgrids and work our way up to the 20×20 grid. On the other hand a bit of
peripheral vision tells us that this is a famous problem in combinatorics. Take
a grid of size n×m, it makes sense that to go from top-left to bottom-right
you have to go down n times and right m times. The real insight is to notice
that if all the movements in one direction are imposed, then there is no more
liberty for the movements in the other direction : they are predetermined.
But this is also with a mix of both movements, as long as the mix involves
half of all the movements necessary to go from one point to another. Indeed
on a 20× 20 grid, if 5 movements downward and 5 movements to the right
are imposed, then the other 10 are predetermined (try it out for yourself to
convince yourself). Basically we are looking for how many ways there are
to arrange (n+m)/2 among n+m possible movements (round (n+m)/2
up or down if it is not whole, it doesn’t matter). In combinatorics this is

denoted
(

n+m
(n+m)/2

)
which is (n+m)!

((n+m)/2)((n+m)/2) . In our case the grid is square

of size 20, which makes things cleaner (no problems with (n+m)/2 being
odd). The answer is simply 40!

20!20! . This solution is faster than the first way
of solving the problem, however some may argue that it not the computer
science way of doing it. I agree, however having a big toolkit will spare you
many problems, thus having a peripheral vision is good. You don’t have to
be a black belt at everything, that’s impossible, however knowing what tools
exist is feasible. If you know what tool to use in what case or you know in
what domain to look into then you can do some research and solve problems
elegantly.

16 Power digit sum

I wouldn’t say there is anything nifty with this problem. One simply has to
convert 21000 to string and iterate through its digits, simple as.
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17 Number letter counts

Now this is the kind of problem where modular arithmetic becomes handy.
Say you want to strip a number n it of its digits above the units digit,
well the clean way to do so it to calculate n mod 10. To get the tens digit
calculate (n mod 100)−(n mod 10)

10 , indeed for digits above the units digit you
have to remove all the digits below it if you want it on its own, you also
need to divide it by its amplitude to remove all the zeroes that you will then
have. Once we have mastered this the problem becomes quite simple. We
iterate from in {1..999} and do some modular operations to get the units,
tens and hundreds digits. We now have to use common sense and check some
conditions. Is there any hundreds digit? Is there an ”and” in the number?
The first question is straightforward. For the second one only has to check
if the number contains a tens or a units digit. The last question is a bit
trickier and is related to the nature of the english language. Indeed numbers
from eleven to nineteen are special because they each have a unique name,
all the others are preceded by the name of the amplitude of the tens digit
(twenty, thirty, etcetera). Finally we have to add the number of letters of
1000, computing it in the loop wouldn’t have made sense since it was the
only number with a thousands digit.

18 Maximum path sum I

If you remember the labyrinth games you played when you were young and
the fastest way to win at them you’ll quickly solve this problem. The fastest
way to win wasn’t to try out every path from the start, but rather to follow
the path from the end and see what path lead to it from the start. The same
idea applies here, we won’t try out every path from the path but go from
bottom to top. Every node has two child nodes, we can just add the value
of the biggest child node to the value of the node we’re looking at. The last
row doesn’t have any child node so we can start at the penultimate row. For
the algorithm itself to work we first have to put the tree in shape, I used a
list comprehension to convert the copy/pasted string form of the tree to a
list of lists. Once we an array we can iterate through it starting from the
penultimate row and working our way up with the use of range(len(T) -

2, -1, -1). The first element of the range is the penultimate row index,
the second if the first row (we put -1 because range() is not inclusive on
the last index), the third simply gives the way to iterate through the range.
On each row we increment each element by its highest child node.
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19 Counting Sundays

Of the first problems this is the one I had the most fun doing. Just like
Problem 17 it connects with the real world. What I mean is that calendars
and languages are human inventions, they are not intrinsic to our universe, yet
we can still manage to deal with them by adapting and creating mathematical
tools. If you’re curious there is a lot of content on the topic of calendar and
mathematics, you could start by reading http://www.wikipedia.com/en/

Determination_of_the_day_of_the_week. First of all we can notice that
a 7 (numbers of days in a week) doesn’t divide 365 nor 366 (leap year), thus
the first day of a year will not be the same as the year before. In fact we can
predict which day it will be next with modular arithmetics. Indeed 365 ≡ 1
(mod 7) and 366 ≡ 2 (mod 7). Now we know that a leap year starting on
a Monday will be followed by a year beginning by a Wednesday. We can
use the same method to calculate the first day of next month, for example if
August begins with a Monday then September will begin with a Thursday
because 31 ≡ 3 (mod 7). Last and not least we need a function to check for
leap years. If a year is divisible by 4 it is a leap year, except if it divisible by
100 and not by 400. We now have all the tools we need. Let’s sumply iterate
through each year and each and modify a flag value with modular arithmetic,
each time the flag value becomes a Sunday we increment a counter.

20 Factorial digit sum

If you managed to solve Problem 16 this one will not be an issue providing
you know how to compute the factorial of a number.

21 Amicable numbers

I didn’t anything nifty for this solution, it’s plain brute force. However the
time to solve the problem is sub ten seconds so it’s not a problem. We only
need a function to return the sum of the divisors of a number. Once we do
we can iterate through {1..10000}, compute sumDivisors(n) and compare
it to sumDivisors(sumDivisors(n)). In others we compute the sum of the
divisors of the sum of the divisors of a given number. I imagine that you
could faster than y script, maybe with a better sumDivisors() function.
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22 Names scores

Like many problems this one is all about successive simple steps: open the
file, put the names in a list, sort them, compute scores. The os module in
Python enables us to choose a directory, for example I put a relative path
in the code. I’m not sure if this is true for every operating system but on
Ubuntu a script will look for files in the directory it is placed in, so that
we don’t have to it where to look. Once you have figured this out simple
use open() and read() to get the names as a long string. I then used a list
comprehension to split the names at commas whilst stripping the names of
the brackets surrounding them, but you can do it another way if it doesn’t
seem natural to you. I think that list comprehensions are powerful and
succint, providing you have gotten used to them. The computer doesn’t
know what value we have assigned to each letter of the alphabet so we have
to tell him. The best way to do so it to create a dictionary containing these
values. Now we can iterate through every name, iterate through every letter
and multiply the score of a name by its position in the names list (by checking
where we are in the loop).

23 Non-abundant sums

I believe the best way to approach this problem is to proceed in two steps.
First we need to find all the abundant number under 28123. Then we can
find every sum of abundant numbers possible and to the following: if a
sum of abundant numbers is inferior or equal 28123 then we store it into

a sum called S, then we can calculate S′ =
28123∑
i=1

i (using the arithmetic

sum formula) and S′ − S will be our answer. In other words, we are using
set theory: we calculate the sum of all the numbers below 28124, then we
calculate the sum of the numbers below 28124 that can be written as the
sum of two abundant numbers and calculate the difference between both
sums. This explains why we only compute abundant numbers below 28123:
the sum of two abundant numbers above 28123 is already known to exist
so we can discard them. The divisors(n) function I used is more efficient
then the one in Problem 21. It uses the fact that if we know that k divides
n, then n/k divides n, provided k 6= n/k.
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24 Lexicographic permutations

We have to do some thinking before delving into this one. Let us look at
the example given at https://projecteuler.net/problem=24. Let us say
we are looking for the 5th permutation, well that would be 201. You can
think of each pair of permutations as three families. The first one being
(012, 021), the second (102, 120) and the last (201, 210). We can see the 5th

permutation as the 1st element of the 3rd family. Let that sink in if it has not
already. To find this mathematically is equivalent to perfoming a modular
operation: bobjective(n−1)! c where n is the number of elements considered in the

permutations (here it is 3). Let us see how it works out for the previous
example: b 5

(3−1)!c = 2, which means that our objective is in the third family

(2 + 1 = 3), in other the first two families contain the first four permutations.
We can keep going and apply the same operation to the remainder of the
euclidian division we performed (1). However now we know that the first of
the permutation is fixed because we know what family it is in (the one that
starts with 2), thus we decrement n: b 11!c = 1. This does not mean that our
objective is the first element of the second family, it means that our objective
is in the first subfamily of the family (and not the second because 1 ≡ 0
(mod 1), which was not the case in the first part of the loop). However the
subfamily (201) is only one element, thus it is the answer. If it was not on
its own we would have to keep going. I will recapitulate by describing the
algorithm. First we compute the euclidian division of our initial objective
by the permutations of the numbers of element n minus 1 (n! is obviously
bigger then any position we could be looking for). We now the first digit of
the permutation we are looking for because (n− 1)! fits that many times in
our objective. We now have a remainder which is the number of elements we
have to look into the same way. In other words it is our new objective. We
know part of where our objective lies and we have to delve into this family
of permutations until we find a single possibility, the final leaf on the tree.

25 1000-digit Fibonacci number

Let’s use the algorithm from Problem 2 to generate Fibonacci numbers
whilst incrementing a counter until we find one that is composed of at least
a thousand digits.

14

https://projecteuler.net/problem=24


26 Reciprocal cycles

From my research I have only found one way to solve this problem: Fermat’s
little theorem (http://www.wikiwand.com/en/Fermats_little_theorem).
If you are interested you can do some research on the subject. The application
of the theorem we interested in is the following: 1

d has a cycle of n digits
if 10n − 1 ≡ 0 (mod d). Another property that can be deduced with this
theorem is for any prime p, 1

p has at most a recurring cycle of p− 1 digits.
Honestly I don’t like these kind of problems. By nature this problem
can’t be solved with brute force algorithms because we don’t know what
maximum length a cycle can be. With mathematics we can find a boundary.
However not everyone can master complicated mathematics like these, what
is important is to recognize when a problem can’t be solved with classical
methods and look for theory. Know the tools at your disposal. We now have
two bits of theory that can be plugged into a simple loop. First of all we
collect all the prime numbers inferior to 1000. Then we iterate through them
in reversed order (bigger primes will producing bigger recurring cycles). Now
we want to find the number of digits in the reccurring cycle for each prime
p, for this we simply check increment a counter n until we find 10n − 1 ≡ 0
(mod p). Finally we check if the recurring cycle has p− 1 digits, if it doesn’t
we do the same thing for a different thing, it it does it is the answer.

27 Quadratic primes

Really there is nothing complex with this problem. If we go from basis that
we can’t induce properties for a polynomial based on another then we simply
have to iterate through each possibility. First of all we need a function to
test if a number is prime, we already have that in our toolkit, for example
from Problem 10. Next we need to check how many primes a polynomial
can generate. For this we create a function that takes as arguments the
coefficient a and b and keeps incrementing n until it returns a composite
number. Now for the candidates we could try every possibility, but that
would be four million, which is unreasonable. By looking at the polynomials
we can notice that if n = 0 then what is left is b, thus b has to be prime,
which also means it has to be positive. The algorithm will run much faster
now. Some people will point out the fact that a has to be odd and bounded
by −b and b, the speedup is not essential. As a bonus I included a plot in
the code and you can notice that indeed a lot of couples (a, b) generate only
one prime because there are no constraints on a.
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28 Number spiral diagonals

This problem is good for people who like toying with numbers. Being one
of them I won’t give a brute force solution but an elegant one. I would
recommend taking a piece of paper, a pen and looking at the example grid
from the website. First of all we can notice that along the diagonals there
are always four numbers, the top right one being the biggest, the top left
the second biggest, the bottom left the third biggest and the bottom right
the smallest. It is quite obvious that the sum of the left side numbers are
equal to the sum of the right side numbers. Hence we can calculate the right
side numbers and multiply their sum by two. What we need is a formula
that gives the nth top right number and another formula for the nth bottom
right number. Let’s start with the top right numbers. Our intuition should
tell us that these numbers are simply the squares of odd numbers. The nth

odd number is given by 2n− 1, thus the nth top right number is (2n− 1).
Now for the bottom right corner. It takes a bit more time to notice there is
a link between each corner, indeed that’s we decided to only calculate only
two corners. The corner values go progressively down in the anticlockwise
way. For example on the first square, the top right corner is equal to 9, is
goes down to 7, then 5, and finally 3. On the second square it’s 25, 21, 17,
13. The conjecture that follows is that the reduction for the nth from corner
to corner is 2(n− 1). From this conjecture we know that the bottom right
corner is equal to the top right corner minus three times the reduction, hence
6(n− 1). To recapitulate, C(n) is the sum of the values for square n, tr(n)
and br(n) the right hand corners:

S =


C(n) = 2(tr(n) + br(n))
tr(n) = (2n− 1)2

br(n) = (2n− 1)2 − 6(n− 1)

⇐⇒ C(n) = 16n2 − 28n+ 16.

Finally we simply calculate 1 +
501∑
i=2

C(n). The reason why we add a 1 is

because the formulate doesn’t work n = 1 (the single cell), thus we start our
sum at 2. Also the sum only goes to 501, not 1001, indeed 501+501−1 = 1001.

29 Distinct powers

We can use a nifty dodge for this problem. Let’s say we have all the terms
of the sequence in a list. To get all distinct terms we turn the list into a set,
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indeed if you have done a little maths you should know that a set contains
unique elements. The Python implementation is simply the set() function
applied to a list comprehension with two for loops.

30 Digit fifth powers

This is one those unbounded problems. What I mean is that the candidate
numbers are in N+. Our first goal is to bound the candidate numbers.
Another way of seeing this is to ask what size are the candidates numbers
going to be. A number of size n is bounded by 10n− 1 (for example a 2-digit
number is bounded by 99). Also the sum of the digits of a number of size n
to the 5th power is bounded by 95n. What we are looking is the first integer
n which doesn’t verify 95n > 10n − 1. The solution is simply to try integers
by hand, or to use a while loop as I did. It turns out that a loose boundary is
6× 95 = 354294. Now the problem is simple, we loop through every integer
between 2 and 354294 and check its digits to the 5th sum up to the integer
with a list comprehension.
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