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Abstract

The lecture notes are based on the number theory topics course on 3
Feb, 2016.

1 modular forms of half integral weights

Let I' € SL2(Z) be a finite index subgroup. Let k be an integer. Recall a
weight k, level I' modualr form is a holomorphic function on the upper half

plane satisfying the funcitonal equation: f (‘C’:is) =(ct+d)*f(r) fory e

Definition 1.1. Half integral weight modular forms are holomorphic functions
on the upper half plane with the modified functional equation: f(y7) = e()(eT+
d)k/2)f() for vy € T where € is some root of unity and the square root is chosen
in some half plane.

Example 1.2. 0(7) = exp(2min?7)
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I'(8) =congruence subgroup mod 8, then 6(y(7)) = { Ve +d)20(r) >0
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where (§) is the Legendre symbol.

Exercise 1.3. For all N, there exist v € T'(N), such that the Legende symbol
ey _ a b
G =-1pora=( ¢ 4)

For integral weight forms the transformation law is simple: j(v,7) = (c7+d)*

then j(7172,7) = j(71,727)j (72, 7) so j(7,7) is a multiplier system.
But (cr +d)!/2 is not a multiplier system.

2 The metaplectic group

Definition 2.1. Mps(R) = {(g,¢)|g € SL2(R), ¢ : H — C,¢* = cT + d}

We see Mps(R) has a natural covering map to SL2(R). Mpy(R) is a Lie
group but not the real points of an algebraic group; in particular it cannot be
realised by a matrix representation.

The group law is given by:

(9:0) * (g1, ¢1) = (99,7 = &(g/T)¢I(T))



Recall the 6 function satisfies some functional equation. This means the
factor of automorphy forms a multiplier system. This fact is equivalent to:

The covering map Mps(R) — SLa(R) splits on I'(8) with the splitting given
by (§)(er +d)'/?

Remark 2.2. The way to prove this is indeed a multiplier system: either use
the fact that the theta function is nonzero, or use quadratic reciprocity.

3 Congruence subgroup problem for SL,

Question: if T' € SL(Ogk) has finite index, where K is a number field, is T a
congruence subgroup?

Here the congruence subgroup means the coefficients of the matrix equals
the identity matrix mod the ideal (n).

Example 3.1. For SLy(Z), the answer is no.

Take T' C SL2(Z) small enough so that T is not torsion free. Then T is a
free group, so there is a surjection I' — Z.

Let T = @F/T T has finite index in T.

Let T = WmT/T(n).

The hom from I' to Z extends to I Z.

[ is the closure of T in SLa(Ay).

Since SLo is semisimple, the commutator map is surjective, [sla, sla] — sls.

So [[,T] is open in SLa(Ay), since T is open in SLa(Ay). So [[,T)] has
finite indez in T.

Hence there is no hom T+ 7 apart from 0.

There is 1+ C — T'— T+ 1.

C' is called the congruence kernel.

Theorem 3.2. The theorem of Bass-Milnor-Serre says that if n is greater or
equal to 3, and the number field K has a real place, then every subgroup of finite
index in SL,(Ok) is a congruence subgroup.

If K is totally complex there will be a noncongruence subgroup.

Let K be totally complex, and contains an n-th root of unity. We can define
the n-th power Legendre symbol on K, as follows:

Let a € K, p=prime ideal in O, p does not divide na, then

a5 =some n-th root of unity mod p.

Define the Legendre symbol () to be the n-th root of 1.

For a general ideal coprime to na, define the Legendre symbol by the product
law.

Define T'(n?) to be the congruence subgroup in SLy(Of) mod the ideal (n?).

Define a map & : I'(n?) — pp,

(20)-{"

Theorem 3.3. Kubata: k is a hom, and its kernel is a noncongruence subgroup.

Exercise 3.4. Prove this.



Bass-Milnor-Serre extended the & to SLy,(Og,n?).

Kk gives an isomorphism between the congruence kernel and p,, as long as n
is the total number of roots of unity in K.

This means every subgroup of finite index in SL,,(Ox,n?) contains some
I'(N) Nker(k). (If either m is at least 3 or [K:QJ) is at least 4).

Remark 3.5. Kubata’s exercise is equivalent to the reciprocity formula for the
Legendre symbol in K, ie the Artin reciprocity law for Kummer extensions of K.

4 Digression on K theory

Before going on, define the K2 group of a field. Let K be any infinite field.
The group SL,,(K) is perfect for m at least 3, meaning it is equal to its own
commutator subgroup.

Hence SL,,(K) has a universal central extension.

1= K2(K) — Sty (K) — SLy(K) — 1

Here K2(K) is defined to be the kernel. It does not depend on m as long as
m is at least 3.

We recall what it means to be a universal central extension: for any Abelian
group A, the central extensions of the form

1= A7 SLy(K)—1

are in bijective correspondence with the hom set

Hom(K2(K), A)

where the correspondence is given by the obvious morphism of extension
sequences.

For a field K, the group K2(K) is calculated by Matsumoto as follows (giving
a presentaion of K2(K)):

K2K)=K*®,K*/ <a®1l—a,ae K\{0,1} >

We will write {a, b} for the image of the tensor a ® b in K2(K).

Remark 4.1. In terms of matrices this means:
[diag(a,a=1,1,...,1),diag(b,b=1,1,...,1)] € K2(K)

Notice we need at least 3*3 matrices for this to make sense. The “means
taking the preimage in St,,(K).

We also get an extension sequence for SLa:
1— K2(K) — something — SLy(K) — 1
by taking the middle term to be the preimage of SL2(K) in St3(K).
This extension is easy to describe: here is a inhomogeneous 2-cocycle.
o(g,h) ={X(gh)/X(g), X(gh)/ X (h)},g,h € SLa(K)
a b c ¢#0
X(< c d >)_{d c=0
This satisfies the cocycle relation.
(9192, 93)0 (g1, 92) = 0(g1,9293)0 (92, 93)

Remark 4.2. The cocycle condition is equivalent to the associativity of the
group law on SLa(K) x Ka(K).

Exercise 4.3. Show o is a 2-cocycle. (Need properties of {a,b}): the bilinearity
of the tensor and the relation {x,1 —x}) =1 for x # 1.



5 Hilbert symbol, metaplectic group again
Let Qp=either a p-adic field or the real numbers. Define for a,b € Q,
1 az?+ by? = lhas a solution in Q,

b)p =
(a,0)y {—1 if not

For the real number case,
(a,b) = 1 a>0o0rb>0
-1 a,b<0

The (a,b) is called the Hilbert symbol and it satisfies the bilinear relations
and the property that (z,1 —z) =1 for x # 1.

In other words the Hilbert symbol is a hom K5(Q,) — {1, —1}. In fact it is
the only nontrivial such.

For the real number case we get a central extension of SLs(R) which repro-
duces our Mp(R). This is a unique connected double cover.

Note: if G=Lie group, then G is homotopic to the maximal compact sub-
group. In the case of SLy(R), the maximal compact subgroup is the circle, so
the first fundamental group is Z, hence there is a unique connected double cover.

The quadratic reciprocity can be stated as:

* —
a, be Q ’Hp prime or infinity (a’7 b)P =1
For each prime we have a central extension

1= po = SLa(Qp) = SLa(Qp) =1

defined by the relavent two-cycle o,.

We can put E}_l\egz together to obtain an adelic version:

where op =[]0y, and o}, is cohomologous to .

By the Hilbert symbol version of the reciprocity law, the cocycle o4 splits
on SLy(Q).

It turns out if p is odd, then oy, splits on SLy(Z,) and o splits on SLy(Z2,4).
oa will split on U =[] 14 SL2(Zp) X SLa(Z2,4).

Now on I'(4) we have two different splittings of almost the same extension
(the difference between the two extensions is oo ).

If we divide one splitting by another, we get a map & : I'(4) — po. If these
were two different splittings of the same cocycle, k would be a hom. But if they
are not, then x is a splitting of o), ie, 0so(g, h) = k(g)x(h)/K(gh).

Remark 5.1. This is how we show k(v)(ct +d)'/? is a multiplier system. And

when we work out what K is, we get m(( g Z )) =(9)

Example 5.2. If K is totally complex, then

SLQ(KOO) = SLQ((C)N,KOO = K@Q R

SLo(C) is simply connected, ie, it has no nontrivial covering groups. Com-
plex Hilbert symbols are 1.

So the extension

1 pp = SLa(A)— SLy(A) — 1

splits on SLo(K) by reciprocity law, and also splits on U x SLa(Ky).

I'(n?) = SLy(K)N (U x SLy(Ky)).

On T'(n?) we have two splittings of the same extension.

Dividing one extension by another, we get a hom r : T'(n?) = .



This is exactly the same k we had before. ker(k) is a noncongruence sub-
group.

Remark 5.3. metaplectic forms are automorphic forms on G(A) for any re-
ductive G over a number field.



