Methods of Applied Mathematics Problem Set 2

Qi Lei

February 1, 2015

1 EXERCISE 6.5

Let $1 \leq p<\infty$ and suppose $f \in L^{p}(\mathbb{R})$. Let $g(x)=\int_{x}^{x+1} f(y) d y$. Prove that $g \in C_{v}(\mathbb{R})$.
Proof:

1. g is continuous: is to prove $\forall x \in \mathbb{R}, \forall \epsilon>0, \exists \delta$, s.t $|g(x+h)-g(x)|<\epsilon, \forall h<\delta$.
\because continuous functions with compact support is dense in $L^{p}(\mathbb{R})$ space, $\therefore \exists \phi \in C_{0}(\mathbb{R})$, s.t $\| \phi-$ $f \|_{L^{p}}$ is sufficient small, so that $\int_{x}^{x+1}|f-\phi| \leq\left(\int_{x}^{x+1}|f-\phi|^{p}\right)^{1 / p}\left(\int_{x}^{x+1} 1^{q}\right)^{1 / q} \leq\|f-\phi\|_{L^{p}}<\epsilon / 3$. $\because \phi$ is continuous with compact support, so it's actually uniformly compact. $\therefore \exists \delta$ s.t $\mid \phi(y+$ $h)-\phi(y) \mid<\epsilon / 3, \forall y \in \mathbb{R}$.

$$
\begin{aligned}
|g(x+h)-g(x)| & =\left|\int_{x+h}^{x+1+h} f(y) d y-\int_{x}^{x+1} f(y) d y\right| \\
& =\left|\int_{x}^{x+1}(f(y+h)-f(y)) d y\right| \\
& \leq \int_{x}^{x+1}|f(y+h)-\phi(y+h)+\phi(y+h)-\phi(y)+\phi(y)-f(y)| d y \\
& \leq \int_{x}^{x+1}|f(y+h)-\phi(y+h)| d y+\int_{x}^{x+1}|\phi(y+h)-\phi(y)| d y+\int_{x}^{x+1}|\phi(y)-f(y)| d y \\
& <\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon
\end{aligned}
$$

2. g vanishes in ∞
$\because f \in L^{p}(\mathbb{R}), \therefore \forall \epsilon>0, \exists N \in \mathbb{R}$, s.t $\left(\int_{|x|>N}|f(x)|^{p} d x\right)^{1 / p}<\epsilon, \therefore$ when $x>\max \{N, N+1\}, g(x) \leq$ $\int_{x}^{x+1}|f(x)| d x \leq\left(\int_{x}^{x+1}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{x}^{x+1} 1^{q}\right)^{1 / q}=\left(\int_{x}^{x+1}|f(x)|^{p} d x\right)^{1 / p} \leq \epsilon$.

2 EXERCISE 6.6

Show that the Fourier transform $\mathscr{F}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow C_{v}\left(\mathbb{R}^{d}\right)$ is not onto. Show, however, that its image is dense in $C_{\nu}\left(\mathbb{R}^{d}\right)$.
Proof:

3 EXERCISE 6.8

Give an example of a funciton $f \in L^{2}\left(\mathbb{R}^{d}\right)$ which is not in $L^{1}\left(\mathbb{R}^{d}\right)$, but such that $\hat{f} \in L^{1}\left(\mathbb{R}^{d}\right)$. Under what circumstances can this happen?
Solution:
$f(x)=\frac{\sin x}{x}, \hat{f}=1 / 2 \sqrt{\pi / 2}(\operatorname{Sign}(1-\xi)+\operatorname{Sign}(\xi+1))$, here f is in L^{2} / L^{1} but \hat{f} is in L^{1}.

4 EXERCISE 6.29

Prove that if $\left\{f_{j}\right\}_{j=1}^{\infty} \subset S$ and $f_{j} \xrightarrow{S} f$, then for any $1 \leq p \leq \infty, f_{j} \xrightarrow{L^{p}} f$.
Proof:

$$
\begin{aligned}
\because f_{j} \xrightarrow{S} f, & \therefore \rho_{n}\left(f_{j}-f\right) \rightarrow 0, \forall n \in \mathbb{N}, \\
& \text { i.e }\left\|\left(1+|\cdot|^{2}\right)^{n / 2} D^{\alpha}\left(f_{j}-f\right)\right\|_{L^{\infty}} \rightarrow 0, \forall n \in \mathbb{N}, \forall|\alpha| \leq n, \alpha \in \mathbb{N}^{d} . \\
\text { Meanwhile, }\left\|f_{j}-f\right\|_{L^{p}}^{p} & =\int\left|f_{j}(x)-f(x)\right|^{p} d x \\
& =\int_{B_{1}(0)}\left|f_{j}(x)-f(x)\right|^{p} d x+\int_{|x| \geq 1}\left|f_{j}(x)-f(x)\right|^{p} d x
\end{aligned}
$$

The former integral obviously can be restrained to any small value, so consider the latter. Since for any small $\epsilon, \exists N$, for $\forall j \geq N, \quad\left(1+|x|^{2}\right)^{(d+1) / 2}\left(f_{j}-f\right)<\epsilon$. Then

$$
\begin{aligned}
\int_{|x| \geq 1}\left|f_{j}(x)-f(x)\right|^{p} d x & =\int_{|x| \geq 1}|x|^{-p(d+1)}|x|^{p(d+1)}\left|f_{j}(x)-f(x)\right|^{p} d x \\
& <\int_{|x| \geq 1}|x|^{-p(d+1)}\left(\left(1+|x|^{2}\right)^{(d+1) / 2}\left|f_{j}(x)-f(x)\right|\right)^{p} d x \\
& \leq \epsilon^{p} \int_{|x| \geq 1}|x|^{-p(d+1)} d x \\
& =\epsilon^{p} d \omega_{d} \int_{1}^{\infty} r^{-p(d+1)} r^{d-1} d r \\
& <\epsilon^{p} d \omega_{d} \int_{1}^{\infty} r^{-2} d r \\
& =\epsilon^{p}
\end{aligned}
$$

where $d \omega_{d}$ is the measure of the unit sphere. So all in all $f_{j} \xrightarrow{L^{p}} f$.

5 ExERCISE 6.31

Let $f \in H^{s}\left(\mathbb{R}^{d}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right):\left(1+|\xi|^{2}\right)^{s / 2}|\hat{f}(\xi)| \in L^{2}\left(\mathbb{R}^{d}\right)\right\}$.
(a) Show that there is some $s_{0} \in \mathbb{R}$ such that $\hat{f}(\xi) \in L^{1}\left(\mathbb{R}^{d}\right)$ for $s>s_{0}$.
(b) Apply the Riemann-Lebesgue Lemma to $\hat{f}(\xi)$ to show that, for $s>s_{0}$, there is some continuous function g such that $f=g$ almost everywhere.
Solution:
(a) Suppose $s_{0}=d+1$. When $s \geq s_{0}$, take $g(\xi)=\left(1+|\xi|^{2}\right)^{s / 2}|\hat{f}(\xi)|$, so $g \in L^{2}\left(\mathbb{R}^{d}\right)$. Apparently $\hat{f}(\xi)=\frac{g}{\left(1+|\xi|^{2}\right)^{s / 2}}$, and $|\hat{f}| \leq|g|$

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|\hat{f}(x)| d x & =\int_{B_{1}(0)}|\hat{f}(x)| d x+\int_{|x| \geq 1,|g(x)| \leq 1}|\hat{f}(x)| d x+\int_{|x| \geq 1,|g(x)|>1}|\hat{f}(x)| d x \\
& \leq \int_{B_{1}(0)}|g(x)| d x+\int_{|x| \geq 1,|g(x)| \leq 1} \frac{1}{\left(1+|x|^{2}\right)^{s / 2}}+\int_{|x| \geq 1,|g(x)|>1}|g(x)|^{2} d x
\end{aligned}
$$

For the first term of (5.1), we know in bounded area $L^{1} \subset L^{2}$, so $\left.g\right|_{B_{1}(0)} \in L^{1}\left(B_{1}(0)\right)$. The first term< $<$.
For the second term of (5.1), we know that $s \geq d+1$, so it $<\int_{|x| \geq 1,|g(x)| \leq 1}|x|^{-d-1} \leq \int_{|x| \geq 1}|x|^{-d-1}=$ $d \omega_{d} \int_{1}^{\infty} r^{-d-1} r^{d-1} d r<\infty$.
For the third term of (5.1), as $g \in L^{2}$, it obviously $<\infty$.
(b)

