Methods of Applied Mathematics Problem Set 2

Qi Lei

February 1, 2015

1 EXERCISE 6.5

Let $1 \le p < \infty$ and suppose $f \in L^p(\mathbb{R})$. Let $g(x) = \int_x^{x+1} f(y) dy$. Prove that $g \in C_v(\mathbb{R})$.

Proof:

1. *g* is continuous: is to prove $\forall x \in \mathbb{R}$, $\forall \epsilon > 0, \exists \delta, s.t |g(x+h) - g(x)| < \epsilon, \forall h < \delta$. \therefore continuous functions with compact support is dense in $L^p(\mathbb{R})$ space, $\therefore \exists \phi \in C_0(\mathbb{R}), s.t \|\phi - f\|_{L^p}$ is sufficient small, so that $\int_x^{x+1} |f - \phi| \le (\int_x^{x+1} |f - \phi|^p)^{1/p} (\int_x^{x+1} 1^q)^{1/q} \le \|f - \phi\|_{L^p} < \epsilon/3$. $\therefore \phi$ is continuous with compact support, so it's actually uniformly compact. $\therefore \exists \delta$ s.t $|\phi(y + h) - \phi(y)| < \epsilon/3, \forall y \in \mathbb{R}$.

$$\begin{aligned} |g(x+h) - g(x)| &= |\int_{x+h}^{x+1+h} f(y)dy - \int_{x}^{x+1} f(y)dy| \\ &= |\int_{x}^{x+1} (f(y+h) - f(y))dy| \\ &\leq \int_{x}^{x+1} |f(y+h) - \phi(y+h) + \phi(y+h) - \phi(y) + \phi(y) - f(y)|dy \\ &\leq \int_{x}^{x+1} |f(y+h) - \phi(y+h)|dy + \int_{x}^{x+1} |\phi(y+h) - \phi(y)|dy + \int_{x}^{x+1} |\phi(y) - f(y)|dy \\ &< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon \end{aligned}$$

2. g vanishes in ∞

 $f \in L^{p}(\mathbb{R}), \quad \forall \epsilon > 0, \exists N \in \mathbb{R}, \ s.t \ (\int_{|x| > N} |f(x)|^{p} dx)^{1/p} < \epsilon, \quad \text{when } x > max\{N, N+1\}, g(x) \le \int_{x}^{x+1} |f(x)| dx \le (\int_{x}^{x+1} |f(x)|^{p} dx)^{1/p} (\int_{x}^{x+1} 1^{q})^{1/q} = (\int_{x}^{x+1} |f(x)|^{p} dx)^{1/p} \le \epsilon.$

2 EXERCISE 6.6

Show that the Fourier transform $\mathscr{F}: L^1(\mathbb{R}^d) \to C_{\nu}(\mathbb{R}^d)$ is not onto. Show, however, that its image is dense in $C_{\nu}(\mathbb{R}^d)$. Proof:

3 EXERCISE 6.8

Give an example of a funciton $f \in L^2(\mathbb{R}^d)$ which is not in $L^1(\mathbb{R}^d)$, but such that $\hat{f} \in L^1(\mathbb{R}^d)$. Under what circumstances can this happen? Solution:

$$f(x) = \frac{\sin x}{x}$$
, $\hat{f} = 1/2\sqrt{\pi/2}(\text{Sign}(1-\xi) + \text{Sign}(\xi+1))$, here f is in L^2/L^1 but \hat{f} is in L^1 .

4 EXERCISE 6.29

Prove that if $\{f_j\}_{j=1}^{\infty} \subset S$ and $f_j \xrightarrow{S} f$, then for any $1 \le p \le \infty$, $f_j \xrightarrow{L^p} f$. Proof:

$$\begin{array}{ll} \therefore f_j \xrightarrow{S} f, & \therefore & \rho_n (f_j - f) \to 0, \forall n \in \mathbb{N}, \\ & i.e & \|(1 + |\cdot|^2)^{n/2} D^{\alpha} (f_j - f)\|_{L^{\infty}} \to 0, \forall n \in \mathbb{N}, \forall |\alpha| \le n, \alpha \in \mathbb{N}^d \\ \end{array}$$

$$\begin{array}{ll} \text{Meanwhile,} & \|f_j - f\|_{L^p}^p & = & \int |f_j(x) - f(x)|^p dx \\ & = & \int_{B_1(0)} |f_j(x) - f(x)|^p dx + \int_{|x| \ge 1} |f_j(x) - f(x)|^p dx \end{array}$$

The former integral obviously can be restrained to any small value, so consider the latter. Since for any small ϵ , $\exists N$, for $\forall j \ge N$, $(1 + |x|^2)^{(d+1)/2}(f_j - f) < \epsilon$. Then

$$\begin{split} \int_{|x|\geq 1} |f_{j}(x) - f(x)|^{p} dx &= \int_{|x|\geq 1} |x|^{-p(d+1)} |x|^{p(d+1)} |f_{j}(x) - f(x)|^{p} dx \\ &< \int_{|x|\geq 1} |x|^{-p(d+1)} ((1+|x|^{2})^{(d+1)/2} |f_{j}(x) - f(x)|)^{p} dx \\ &\leq \epsilon^{p} \int_{|x|\geq 1} |x|^{-p(d+1)} dx \\ &= \epsilon^{p} d\omega_{d} \int_{1}^{\infty} r^{-p(d+1)} r^{d-1} dr \\ &< \epsilon^{p} d\omega_{d} \int_{1}^{\infty} r^{-2} dr \\ &= \epsilon^{p} \end{split}$$

where $d\omega_d$ is the measure of the unit sphere. So all in all $f_j \xrightarrow{L^p} f$.

5 EXERCISE 6.31

Let $f \in H^{s}(\mathbb{R}^{d}) = \{ f \in L^{2}(\mathbb{R}^{d}) : (1 + |\xi|^{2})^{s/2} | \hat{f}(\xi)| \in L^{2}(\mathbb{R}^{d}) \}.$

(a) Show that there is some $s_0 \in \mathbb{R}$ such that $\hat{f}(\xi) \in L^1(\mathbb{R}^d)$ for $s > s_0$.

(b) Apply the Riemann-Lebesgue Lemma to $\hat{f}(\xi)$ to show that, for $s > s_0$, there is some continuous function g such that f = g almost everywhere.

Solution:

(a) Suppose $s_0 = d + 1$. When $s \ge s_0$, take $g(\xi) = (1 + |\xi|^2)^{s/2} |\hat{f}(\xi)|$, so $g \in L^2(\mathbb{R}^d)$. Apparently $\hat{f}(\xi) = \frac{g}{(1 + |\xi|^2)^{s/2}}$, and $|\hat{f}| \le |g|$

$$\begin{split} \int_{\mathbb{R}^d} |\hat{f}(x)| dx &= \int_{B_1(0)} |\hat{f}(x)| dx + \int_{|x| \ge 1, |g(x)| \le 1} |\hat{f}(x)| dx + \int_{|x| \ge 1, |g(x)| > 1} |\hat{f}(x)| dx \\ &\le \int_{B_1(0)} |g(x)| dx + \int_{|x| \ge 1, |g(x)| \le 1} \frac{1}{(1+|x|^2)^{s/2}} + \int_{|x| \ge 1, |g(x)| > 1} |g(x)|^2 dx \ (5.1) \end{split}$$

For the first term of (5.1), we know in bounded area $L^1 \subset L^2$, so $g|_{B_1(0)} \in L^1(B_1(0))$. The first term $< \infty$.

For the second term of (5.1), we know that $s \ge d+1$, so it $< \int_{|x|\ge 1, |g(x)|\le 1} |x|^{-d-1} \le \int_{|x|\ge 1} |x|^{-d-1} = d\omega_d \int_1^\infty r^{-d-1} r^{d-1} dr < \infty$.

For the third term of (5.1), as $g \in L^2$, it obviously $< \infty$.

(b)