Integral of Inverse Exponential Logarithmic Function from Zero to Infinity

Ivan V. Morozov

August 2019

Suppose one has the integral

$$
\int_{0}^{\infty} \frac{1}{x^{\ln x}} d x
$$

How would it be integrated over the given interval? There is a property which allows for a function to be expressed as the constant e raised to the power of the natural logarithm of that function,

$$
u=e^{\ln u}
$$

This can be applied to the very same integrand in the integral $\int_{0}^{\infty} \frac{1}{x^{\ln x}} d x \cdot \frac{1}{x^{\ln x}}$ can be expressed as $x^{-\ln x}$, and using the exponential property, it is shown to be that

$$
x^{-\ln x}=e^{\ln \left(x^{-\ln x}\right)}
$$

Using the property of the natural log function

$$
\ln \left(a^{b}\right)=b \ln a
$$

the function $e^{\ln \left(x^{-\ln x}\right)}$ can be expressed as such,

$$
x^{-\ln x}=e^{-\ln x \ln x}
$$

or simply

$$
e^{-\ln ^{2} x}
$$

Taking the original integral $\int_{0}^{\infty} \frac{1}{x^{\ln x}} d x$ and substituting the integrand with the derived expression, the integral can be represented as

$$
\int_{0}^{\infty} e^{-\ln ^{2} x} d x
$$

This problem can now be solved with integration by parts. One can substitute $\ln x$ for arbitrary variable u such that

$$
u=\ln x
$$

Therefore $d u=\frac{1}{x}$ for the logarithmic derivative of x is $\frac{1}{x}$, and it can be said that

$$
\begin{aligned}
& d x=x d u \\
& \ln ^{2} x=u^{2}
\end{aligned}
$$

and

$$
x=e^{u}
$$

From this, the original integral can be shown to be

$$
\int_{0}^{\infty} e^{u-u^{2}} d u
$$

Taking the expression $u-u^{2}$, one can complete the square to get the following,

$$
\begin{gathered}
u-u^{2} \\
=-\left(u^{2}-u\right) \\
=\frac{1}{4}-\left(u^{2}-u+\frac{1}{4}\right) \\
=\frac{1}{4}-\left(u-\frac{1}{2}\right)^{2}
\end{gathered}
$$

Substituting this into the integral gives

$$
\int_{0}^{\infty} e^{\frac{1}{4}-\left(u-\frac{1}{2}\right)^{2}} d u
$$

Another substitution can be applied

$$
v=u-\frac{1}{2}
$$

and therefore $d v=1$ since $\frac{d}{d x} u=1$ and $\frac{d}{d x} \frac{1}{2}=0$. It can be concluded that $d v=d u$, and substituting v into the integral, one has

$$
\int_{0}^{\infty} e^{\frac{1}{4}-v^{2}} d v
$$

and when $e^{\frac{1}{4}}$ is factored out,

$$
\sqrt[4]{e} \int_{0}^{\infty} e^{-v^{2}} d v
$$

A factor of of $\frac{\sqrt{\pi}}{2}$ can be added to the outside of the integral and its reciprocal $\frac{2}{\sqrt{\pi}}$ to its inside. Now the integral becomes

$$
\frac{\sqrt[4]{e} \sqrt{\pi}}{2} \int_{0}^{\infty} \frac{2}{\sqrt{\pi}} e^{-v^{2}} d v
$$

The Gauss error function $\operatorname{erf}(v)$ is defined as

$$
\operatorname{erf}(v)=\frac{2}{\sqrt{\pi}} \int_{0}^{v} e^{-t^{2}} d t
$$

Or as an indefinite integral form,

$$
\operatorname{erf}(v)=\frac{2}{\sqrt{\pi}} \int e^{-v^{2}} d v
$$

This definition can be substituted into the previously derived equation to become

$$
\left[\frac{\sqrt[4]{e} \sqrt{\pi} \operatorname{erf}(v)}{2}\right]_{0}^{\infty}
$$

The substitution $v=u-\frac{1}{2}$ can be undone to get

$$
\left[\frac{\sqrt[4]{e} \sqrt{\pi} \operatorname{erf}\left(u-\frac{1}{2}\right)}{2}\right]_{0}^{\infty}
$$

and since it was stated earlier that $u=\ln x, u$ also can be undone and substituted back in to the equation,

$$
\left[\frac{\sqrt[4]{e} \sqrt{\pi} \operatorname{erf}\left(\ln x-\frac{1}{2}\right)}{2}\right]_{0}^{\infty}
$$

This can be simplified to

$$
\frac{\sqrt[4]{e} \sqrt{\pi} \operatorname{erf}\left(\ln \infty-\frac{1}{2}\right)}{2}-\frac{\sqrt[4]{e} \sqrt{\pi} \operatorname{erf}\left(\ln 0-\frac{1}{2}\right)}{2}
$$

and further simplified to

$$
\frac{\sqrt[4]{e} \sqrt{\pi} \operatorname{erf}(\infty)}{2}-\frac{\sqrt[4]{e} \sqrt{\pi} \operatorname{erf}(-\infty)}{2}
$$

The limit of the Gauss error function $\operatorname{erf}(x)$ as x approaches infinity, is

$$
\lim _{x \rightarrow \infty} \operatorname{erf}(x)=1
$$

and the limit of that function as x approaches negative infinity equals

$$
\lim _{x \rightarrow-\infty} \operatorname{erf}(x)=-1
$$

Therefore, $\operatorname{erf}(\infty)=1$ and $\operatorname{erf}(-\infty)=-1$, and plugging this into the equation, it becomes

$$
\frac{\sqrt[4]{e} \sqrt{\pi}}{2}+\frac{\sqrt[4]{e} \sqrt{\pi}}{2}
$$

which simplifies to

$$
\sqrt[4]{e} \sqrt{\pi}
$$

From this it can be said that

$$
\int_{0}^{\infty} \frac{1}{x^{\ln x}} d x=\sqrt[4]{e} \sqrt{\pi}
$$

