
Implementation of Stereographic and Spherical Projection
in Structural Geology with JavaScript and the web

through SvgNet

Arijit Laik

M.Sc. Semester 1,
Department of Geology,

Durgapur Goverment College

Abstract
Projections are a “prescribed” part of structural analysis and visualizations, with the

change in day and age numerous computer applications have been written to aid this. Most
of them have taken care in explaining and elaborating the mathematical and programmatic
aspects of their implementation. These applications and/or programs all have attained
a robust and well accepted status in the field. The previously developed programs have
mostly taken a traditional approach in code and design, i.e. the use of programming
languages like C/C++, Fortran, Java, Python or packages like Matlab, Mathematica etc.
The Open Source Web application discussed here takes up the task of removing system
dependencies of the code by the use of JavaScript, the language of the web-browsers,
for the entirety of the programming, and improves portability of the output by directly
plotting into Scalable Vector Graphics(SVG).

1 Introduction
Representation of orientation of linear and planar elements in spherical and stereographic
projection inevitably aid Structural Geologists with their research and other objectives.
Thus a proper approachable method is to be followed when projections are dealt with,
fundamentals of projections have deep seated roots inside mathematics and analytical
geometry which are generally not discussed in structural geology textbooks, however lit-
erature like Goodman and Shi [1985] and Pollard and Fletcher [2005] respective describe
and review the basic concepts, the analytical expressions necessary to plot the attitudes
of planar and linear structural elements in the equal-angle and the equal-area lower hemi-
spherical projections, and discuss the construction techniques for those nets, which serve
as the backbone of the algorithms used in the discussed application. Majority of avail-
able orientation analysis packages(like Cardozo and Allmendinger [2013], Vollmer [2015])
are developed on system dependent native programming languages or scripting packages
and produce raster output which may be exported into the vector format. SvgNet.js
removes this hurdle by generating SVG(Scalable Vector Graphics) markup directly from
input data as inline SVG in an HTML Document Object, via a JavaScript code, more
commonly referred to as Document Object Model (DOM) which is a cross-platform and
language-independent convention for representing and interacting with objects in HTML,
XHTML, and XML documents. In simple terms its a JavaScript application program in-
terface(API) which generates a vector description(inline SVG elements) representing the
graphic output, from the data i.e. linear or planar attitudes within a simple web-browser
interface.

1

2 Expressions and Relations
Leaving aside the rigorous analytical and geometrical procedures discussed in Goodman
and Shi [1985] and Pollard and Fletcher [2005] the expression that are necessary, and
have been used, for the programmatic implementation of the graphical projections are
discussed below. The reference Cartesian or polar coordinate system used in all of the
following equations have their center coinciding with the center of the reference sphere
and primitive circle.

2.1 Equal-Angle Lower Hemispherical Projection
2.1.1 Planar Attitudes

The stereographic projection of the inclined plane is a circle whose center is at C, and
whose radius, r, are accordingly determined by, From [Goodman and Shi, 1985, p. 67-68]
:

r = R

cosα (1)

and the coordinates of the center of the circle representing the plane

(Cx, Cy) = (R tanα sin β,R tanα cosβ) (2)

where R is the radius of the primitive circle, α and β are the dip and dip direction,
respective, of the planar element.
It is to be noted that the scope of projection is for one hemisphere only hence the projection
of a planar elements on the Wulff net is an arc which starts at the point (R, θ) and ends
at (R, θ + π), where θ is the strike of the plane i.e. according to the Right Hand Rule
(β − π/2).

2.1.2 Linear Attitudes

These are the equations used to plot the projection of a linear element on a stereonet of
radius R, given the azimuth of plunge, α , and angle of plunge, φ , from [Pollard and
Fletcher, 2005, p. 59],

(x, y) =
(
R tan

(
45◦ − 1

2φ
)

sinα,R tan
(

45◦ − 1
2φ

)
cosα

)
(3)

this equation 3 is generally used for plotting linear and planar elements,as a family of
linear elements, but SvgNet.js does’t use this for equal-angle projection of planes, for
the sake of simplicity, reduced number of steps in plotting a great circle directly as a circle
due to the availability of a vector elliptical arc implementation in the SVG path element.

2.1.3 Small Circles

The locus of lines (through a common origin) making an equal angle with a given direction
through the origin is a cone. This cone pierces a sphere about the origin along a circle;
it is denoted a small circle because it can be generated also by the intersection of the
reference sphere with a plane that does not contain the origin. By the fundamental
property of stereographic projection[Goodman and Shi, 1985, p. 93-94], any small circle
on the reference sphere in the projection plane[Goodman and Shi, 1985, p. 71]. A bit
geo-logically a pair small circles in a stereonet reference grid can be imagined as the locus
of projection of all line which have the same rake on a plane with a fixed strike and
varying i.dip and ii. dip direction, which can be expressed as function of semi-epcial angle
ω and the R, the radius of the primitive circle as a circle with radius,s and center (Sx, Sy),
[Goodman and Shi, 1985, p. 75]

s = R tanω (4)

2

(Sx, Sy) =
(

0, ±Rcosω

)
(5)

2.2 Equal-Area Lower Hemispherical Projection
This projection system is weakly developed presently in the application as the statistical
implications are not yet worked out with in the API, yet this projection is done in a fairly
cumbersome manner by the use of a single expression that relates the xy coordinates of
the projection to the trend and plunge of a linear attitude. Hence, planar elements are
projected as the a line through a fixed number of points on the beizer cubic curve i.e. the
projection of planes in this system. Although SVG supports the drawing of these curves
though the four control points a proper computational approach of plotting them as the
ideal cubic curve is not well written about in any literature. Mostly due to the fact that
this projection is used for statistical analysis where it is generally more convenient,owing
to a generic good sample size, to plot the poles to a plane than the plane itself .
The coordinates of a point on the Schmidt net of radius R representing the orienta- tion
of a linear element with plunge direction, α , and plunge angle, φ (foliations or other
planar fabrics the azimuth and plunge of the normal) are , from [Pollard and Fletcher,
2005, p. 66],

(x, y) =
(
R
√

2 sin
(

45◦ − 1
2φ

)
sinα,R

√
2 sin

(
45◦ − 1

2φ
)

cosα
)

(6)

3 JavaScript,SVG and the DOM
3.1 SVGs
Since SVG is the graphical component of the discussed application, here is a brief de-
scription of the tools the vector graphic language provides, that have been integrally used
in the program.
According to Dailey [2010] Scalable Vector Graphics (SVG) is a Web graphics lan-
guage. SVG defines markup and APIs for creating static or dynamic images, capable
of interactivity and animation, including various graphical effects. It can be styled with
CSS, and combined with HTML.
The default coordinate system in SVG is much the same as in HTML. It works as a
two-dimensional x − y plane. The origin (where x = 0 and y = 0) is the upper left-hand
corner. As we move right from there, x increases. As we move downward, y increases.

3.1.1 SVG Elements

The <line> object draws a line between two specified points: (x1, y1) and (x2, y2). In
order to see the line, it must have a stroke (i.e., a color). Hence, a sort of minimal line
consists of code such as the following:
<line x1="5" y1="5" stroke="red" x2="90" y2="90" />
The <circle> does have a slightly simpler syntax the simplest circle requires only a center
point (cx, cy) and a radius,r:
<circle cx="80" cy="50" r="40"/>
<path> is a very flexible drawing option. It renders the movement of a stylus through
two dimensions, with both pen-up and pen-down options, including straight and curved
segments joined together at vertices which are either smooth or sharp. One other aspect
of the <path> deserves mention. That is the elliptical arc. It might seem that an
arc would be a very simple topic, but that given any two points in the plane and two
elliptical radii, there often are two ellipses that traverse those points with specified radii
and those points specify two different arcs for each ellipse. The arc subcommand of the
<path> has the following syntax: A rx ry XAR large-arc-flag sweep-flag x y. The

3

arc begins at the current point (determined by the last coordinate specified, e.g. by the M
subcommand), and ends at (x, y). The ellipse will have radii of rx and ry, with the x-axis
of the ellipse being rotated by XAR degrees. The particular ellipse (of the two possible) is
specified by the large-arc-flag (0 or 1) and the particular segment of the ellipse is
specified by the sweep-flag. (0 or 1).

It begins by specifying where the drawing will begin by inserting as the first element of
d a notation such asx y for numbers x and y. It might be though of as M x y as meaning
move pen to the coordinate x y. From there the options of moving (with pen still down
on the canvas)
• linearly (L),
• quadratically (Q),
• cubically (C)
• or through an elliptic arc (A).

For example, d="M 100 100 L 200 200" would succeed in drawing a diagonal line from
the point (100, 100) to the point (200, 200) as shown.
<path stroke="black" d="M 100 100 L 200 200"/>

3.2 SvgNet.js
The javascript file which is the core of all the functionalities of this application is named
SvgNet.js, accessible via the open-source repository at https://github.com/arijitlaik/
SvgNet/, not only provides API level functions which can be used to generate plots from
input data like strike, dip, pitch plunge, rakes etc but also provides some basic SVG
plotting API function, all of these could be used in a browser JavaScript console. Thus
successfully providing for all the functionalities like

1. minimal, non dependent API methods to create svgs
2. functions to create svg elements from input data of attitudes
3. Objects oriented approach and access e.g. the plane, with their inherent properties

like strike,dip and other properties like colour and thickness of its plot, which is
another object with its intrinsic properties)

Unlike many other programming languages, JavaScript does not define different types
of numbers, like integers, short, long, floating-point etc. JavaScript numbers are always
stored as double precision floating point numbers, following the international IEEE 754
standard. This format stores numbers in 64 bits, where the number (the fraction) is
stored in bits 0 to 51, the exponent in bits 52 to 62, and the sign in bit 63. Consequently
these are passed on to the SVG attribute values, giving a more precise plot representation,
although this precision does add a size constrains of polyline elements with lots of data
points.

3.3 Usage
The SvgNet.js is intended to be a standalone wrapper for structural geology projection
plots, and could find usage a an plotting API or an application after binding it with
an standardised user interface and utility provisions. By virtue of its base in web based
standards its inter-portability and device independent nature could aid both field based
and later stages of structural analysis or as a library for the real-time cross-client display
of orientation data.

4

https://github.com/arijitlaik/SvgNet/
https://github.com/arijitlaik/SvgNet/

3.3.1 Description of function objects and prototypes

Following is a brief discussion of the function objects, object prototypes and variables
used in the API
SchmidtNet_Flag: the global boolean variable to determine projection type
Pt(x_cord, y_cord) : object prototype for a set of Cartesian coordinates with members
x and y, as specified by the argument
center: the global variable of type Pt representing the center of the figure in the svg
coordinate system
radius_primitive: global variable storing the radius of the primitive circle
Svg_obj(in_id, id): is the object constructor for a new SVG object, i.e. creates a SVG
within the in_id element with the argument specified id
cart2svg(cart_cords) : returns the SVG coordinate transformation of Cartesian coor-
dinate arguments
torad(degrees) : returns the radian approximation of degrees.
todeg(radians) : returns the degree approximation of radians.
linText(start,end) : returns the d attribute for a straight line from the point
(start.x, start.y) to the point (end.x, end.y) , calls the cart2svg for coordinate transfor-
mation
polytext(points) : returns the d attribute for a polyline through the points in
(points[i].x, points[i].y) where i = 0, 1, 2, 3 . . . points.length
arcText(start_angle, radius, end_angle, ccw) : returns the d attribute for a cir-
cular arc with radius and between the polar coordinates
(r, start_angle) and (r, end_angle) the argument ccw is boolean indicating the sense of
movement between the specified points
Path_obj(d, stroke, stroke_wth, fill, deg, id): Object prototype of a SVG path
element which creates a <path>, with the given arguments as its attributes, the d being
generated by or a direct call to the d attribute generator functions such as arcText(),
polyText, lineText, as child of a Svg_obj, intended to be used with plotting non-point
projected elements like lines, poles to planes etc
Circ_obj(cen, radius, stroke, stroke_wth, fill, deg, id) Object prototype of a
SVG circle element which creates a <circle>, with the given arguments as its attributes,
as child of a Svg_obj
Wtp2cart(plunge, trend) : applies the equation 3 to convert the trend and plunge to
cartesian coordinates returning it object of type Pt
Stp2cart(plunge, trend) : applies the equation 6 to convert the trend and plunge to
cartesian coordinates returning it object of type Pt
Ssdr2cart(strike, dip, rake, op_flag) : this utilizes a trigonometric conversion
from rake data to trend and plunge with the help the equations

trend = strike+ tan−1(cos(dip))(tan(rake)) (7)

Plunge = sin−1 (sin(dip))(sin(pitch)) (8)

this function also take into consideration the strike end from which the rake, convention-
ally maximum 90◦, is measured w.r.t. the RHR strike put in as the argument, and does
necessary augmentations
Plane(strike, dip, clr, lwidth, id): Apart from the necessary properties like strike,
dip, colour, stroke width, and id, this prototype has a member function draw() which
creates the property plot an object of type Path_obj depending on the dip and projec-
tion type. The plot is a arc of radius defined in equation 1 in a Wulff net and a poly-line
estimation of points that are projections of lines which have rake of 0◦ to 90◦ measured
from both the strike ends of the Plane, in a Schmidt net and a line when dip = 90. This
draw() functions call Ssdr2cart() for the conversion of rake type data to Cartesian co-
ordinate data used in the poly line estimation. The modify function of this object allows

5

modification of a previously created Plane object after its strike/dip are changes

Object prototypes for attitudes that plot as point objects are
1. Line(trend, plunge, clr, id) : the simple line object constructor
2. LineonPlane(onPlane, pitch, op_flag, clr, id): the line on a plane, i.e pa-

rameter onPlane is an object of type Plane but has not plot object, as Plane.draw()
is called only when the colour: clr is passed on to as argument of parameter, passes
the values obtained from equn. 8 and equn. 7 and the op_flag to Stp2cart and
Wtp2cart.

3. PoletoPlane(ofPlane, clr, id): the pole to plane which similarly uses a no-plot
Plane object as a parameter to calculate the trend and plunge of the pole.

These prototypes hold design similarity to Plane in context of the the member functions
draw(): which creates Circ_obj with radius 2 or 1 pixels, with centres determined by
equations 6 or 3; and modify() function .

The object prototypes WulffNet() and SchmidtNet() are the for the creation of
nets of the respective types, with grid intervals of 5◦s .
Wulff Net great circles and small circles are Path_obj function calls with the "d" parameter
arguments being returned by arcText function with radii according to equations 1 and 4
respectively.
Schmidt Net being draw by loci line estimations of cubic curves, estimated from the
rake on a plane to trend/plunge data then to Cartesian Coordinates by the use of the i
Ssdr2cart which then uses ii. Stp2cart, finally all the data points 5◦intervals of rakes
for planner projections, 5◦intervals of dip and a single dip direction change for conical
surface(equivalent to small circles) are passed as an array of Pt type objects to the
polytext function which returns the d attribute to the Path_obj.

4 Conclusion and Roadmap
4.1 Using the SvgNet.js in the SvgNet app
The context of this article has mainly dealt in the procedural part of the application i.e.
the design of the API that aids in the building the app, thus User Interface part need
little discussion. The API has been designed in such away that it paves the an easy path
for HTML5 single page application development work-flow. The function provided can be
blinded to HTML elements with much easy and without the use of any external libraries,
although input parser and export to raster formats need not be done from bare-bones. The
SvgNet.js script combined with other input parser would allow the implementation of data
import from cvs and spreadsheets. A minimal Sample Application build on the SvgNet.js
is called SvgNet and can be accessed online at https://arijitlaik.github.io/SvgNet
it provides data input and the option of saving the thus generated inline SVG for use with
any generic Vector Graphics editor like Corel Draw, Inkscape and Adobe Illustrator.

4.2 The Road Ahead
The API is a standalone lightweight library that can be used to render simple Structural
geology projections on the Web. The web platform being the to-go place for all the
technological diaspora, and the Fluid, Open and System Independent Platform leaves
us with a lots of new ways of exploring data, and hence the urge to port exiting native
applications to the web is but a necessity. This application being the first of its(Free
and Open Source) kind in this field, is still at conceptual Alpha level release. Advanced
analytical procedures such as Density Contouring, statistical implications, exporting of

6

https://arijitlaik.github.io/SvgNet

the data via JSON (JavaScript Object Notation), a lightweight data-interchange format,
for humans to read and write and for machines to parse and generate, needs to be groomed
out from the present state. The Developer of the application would be humbly grateful
for the reviews(at laikarijit@gmail.com) and advice on taking this code to framework level
altitudes which would imply to be a completely robust and portable web infrastructural
interface for Structural Analysis on an open and accessible platform.

Important links

Source-code: https://github.com/arijitlaik/SvgNet
Bugs/Issues: https://github.com/arijitlaik/SvgNet/issues
Sample WebApp: http://arijitlaik.github.io/SvgNet/
and its compiled Mobile App: https://build.phonegap.com/apps/1624590/share

References
N. Cardozo and R. W. Allmendinger. Spherical projections with {OSXStereonet}. Com-

puters & Geosciences, 51:193 – 205, 2013. ISSN 0098-3004. doi: http://dx.doi.org/10.
1016/j.cageo.2012.07.021. URL http://www.sciencedirect.com/science/article/
pii/S0098300412002646.

D. Dailey. An svg primer for today’s browsers, 2010. URL http://www.w3.org/
Graphics/SVG/IG/resources/svgprimer.htm.

R. Goodman and G. Shi. Block theory and its application to rock engineering. Prentice-Hall
international series in civil engineering and engineering mechanics. Prentice-Hall, 1985.
ISBN 9780130781895. URL https://books.google.co.in/books?id=AclRAAAAMAAJ.

D. Pollard and R. Fletcher. Fundamentals of Structural Geology. Cambridge University
Press, 2005. ISBN 9780521839273. URL https://books.google.co.in/books?id=
9atcPwpwgJ0C.

F. W. Vollmer. Orient 3: Spherical projection and orientation data analysis program,
2015. URL http://www.frederickvollmer.com/orient/.

7

https://github.com/arijitlaik/SvgNet
https://github.com/arijitlaik/SvgNet/issues
http://arijitlaik.github.io/SvgNet/
https://build.phonegap.com/apps/1624590/share
http://www.sciencedirect.com/science/article/pii/S0098300412002646
http://www.sciencedirect.com/science/article/pii/S0098300412002646
http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.htm
http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.htm
https://books.google.co.in/books?id=AclRAAAAMAAJ
https://books.google.co.in/books?id=9atcPwpwgJ0C
https://books.google.co.in/books?id=9atcPwpwgJ0C
http://www.frederickvollmer.com/orient/

	Introduction
	Expressions and Relations
	 Equal-Angle Lower Hemispherical Projection
	Planar Attitudes
	Linear Attitudes
	Small Circles

	 Equal-Area Lower Hemispherical Projection

	JavaScript,SVG and the DOM
	SVGs
	SVG Elements

	SvgNet.js
	Usage
	Description of function objects and prototypes

	Conclusion and Roadmap
	Using the SvgNet.js in the SvgNet app
	The Road Ahead

