Proposition: A number is divisible by 4 if and only if its last 2 digits are divisible by 4 .

Proof. Let $n \in \mathbb{Z}$.
Assume n is divisible by 4 , we want to show that the last two digits of n are divisible by 4 . By the definition of divides, $n=4 b$ for some $b \in \mathbb{Z}$. n can also be expressed in the form $n=a_{k} *(100)^{k}+a_{k-1} *(100)^{k-1}+\ldots+a_{0} *(100)^{0}$, where a_{k} is a two digit integer whose digits correspond to the digits of n. For example, 123456 can be expressed as $12 * 100^{2}+34 * 100^{1}+56 * 100^{0}$. By substitution, $a_{k} *(100)^{k}+a_{k-1} *(100)^{k-1}+\ldots+a_{0}=4 b$. Rearranging the left side gives us $n=a_{k} * 100 *(100)^{k-1}+a_{k-1} * 100 *(100)^{k-2}+\ldots+a_{1} * 100+a_{0}=$ $4\left(a_{k} * 25 *(100)^{k-1}+a_{k} * 25 *(100)^{k-2}+\ldots+a_{1} * 25\right)+a_{0}=4 b$. Consequently $4 c+a_{0}=4 b$ for the number $c=a_{k} * 25 *(100)^{k-1}+a_{k-1} * 25 *(100)^{k-2}+\ldots+a_{1} * 25$, which is an integer under the closure properties of the integers. Rearranging once more gives $a_{0}=4(b-c)=4 d$ for the number $d=b-c$ which is an integer under the closure properties of the integers. Thus $4 \mid a_{0}$ by the definition of divides. Recall that a_{0} was a 2 digit integer whose digits were the last two digits of n. Therefore, the last 2 digits of n are divisible by 4 as desired.

Conversely, assume the last 2 digits of n are divisible by 4 , we want to show that n is divisible by 4 . Just as before, n can be represented as $n=a_{k} *$ $(100)^{k}+a_{k-1} *(100)^{k-1}+\ldots+a_{0} *(100)^{0}=4\left(a_{k} * 25 *(100)^{k-1}+a_{k-1} * 25 *\right.$ $\left.(100)^{k-2}+\ldots+a_{1} * 25\right)+a_{0} . a_{0}$ still represents the last 2 digits of n, and is therefore divisible by 4 based on the hypothesis, allowing us to express it as $a_{0}=4 e$ for some integer e by the definition of divides. Using substitution, $n=4\left(a_{k} * 25 *(100)^{k-1}+a_{k-1} * 25 *(100)^{k-2}+\ldots+a_{1} * 25\right)+4 e$. Consequently, $n=4 f$ for the number $f=a_{k} * 25 *(100)^{k-1}+a_{k-1} * 25 *(100)^{k-2}+\ldots+a_{1} * 25+e$, which is an integer under the closure properties of the integers. Therefore, n is divisible by 4 as desired.

