
FACULTY OF MATHEMATICS & COMPUTER SCIENCE

NoSQL database systems
for professional football analytics

Konstantinos Triantos (0852612)

March 8, 2017

2IMW05 - Capita Selecta Seminar Web Engineering
under supervision of assistant professor

dr. G.H.L. Fletcher

ABSTRACT

The evolution of needs demand the evolution of solutions. A new trend in database man-
agement suggests NoSQL databases as a solution in many data handling demands. SQL and
NoSQL databases are different instances of the same solution. In this work, an attempt has
been made to investigate, which flavor of NoSQL database is more appropriate for each situ-
ation and which are their similarities with the SQL databases. More specifically, the intention
of this work is to define which type of store is the most appropriate for a specific input data-
set related to professional football analytics based on the paper "Soccer Video and Player
Position Data-set". According to this specific data-set, the most popular NoSQL stores are
examined, in terms of scalability, query language, users community and availability. The
sample which is investigated consists of document stores (MongoDB, Azure DocumentDB,
Apache Cassandra), stream stores (Apache Storm and Apache Spark) and graph stores (Neo4J
and OrientDB). Regarding data-stores, which use documents, MongoDB is the most popular
store. After investigating, stream stores, which seem more real-time business systems than
to regular database systems, no conclusion can be made since Storm and Spark are similar.
About graph data-stores, which use graph structures for semantic queries, Neo4J is more pop-
ular than OrientDB, but OrientDB has a slight advantage against Neo4J in terms of scalability.
Because of the fact that in many cases the traditional relational databases still seem to be
the ideal solution an experiment has been taken place, in order to specify which solution fits
better to the examined data-set. According to these aspects, a set of benchmark queries for
MongoDB and MySQL, has been built. This specific benchmark covers a set of requirements
regarding querying the input data-set and the output of the experiment is that both SQL and
NoSQL have advantages and disadvantages against each other. More specifically, according
some benchmark queries NoSQL behaves better than SQL and according some others vice
versa.

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

CONTENTS

1 Introduction 9
1.1 The need of Database Management . 9
1.2 What is Database Management System . 9
1.3 What is a SQL Database System . 9
1.4 What is a NoSQL Database System . 10
1.5 SQL vs NoSQL . 10

2 Concept Idea 11
2.1 Scalability . 11
2.2 Productivity . 11
2.3 Metrics . 12

3 Examined Data-set 13
3.1 Soccer Video and Player Position Data-set . 13
3.2 Data-set format . 14

4 Document Stores 15
4.1 Suitable cases . 16
4.2 Unwarranted cases . 16
4.3 MongoDB . 17

4.3.1 Query Language . 17
4.3.2 SQL to MongoDB Mapping . 18
4.3.3 Scalability . 19
4.3.4 Availability & Community . 19

4.4 Azure DocumentDB . 20
4.4.1 Query Language . 20
4.4.2 Scalability . 21
4.4.3 Availability & Community . 21

4.5 Apache Cassandra . 22
4.5.1 Query Language . 22
4.5.2 Scalability . 23
4.5.3 Availability & Community . 23

4.6 Comparison . 24
4.6.1 Query language . 24
4.6.2 Supported drivers . 24
4.6.3 Support . 24
4.6.4 Summary . 24

5 Stream Stores 25
5.1 Apache Storm . 25

5.1.1 Architecture . 26
5.1.2 Scalability . 27
5.1.3 Storm Users . 28

5

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

5.2 Apache Spark . 29
5.2.1 Architecture . 29
5.2.2 Spark Users . 31

5.3 Comparison . 32

6 Graph Stores 33
6.1 Suitable cases . 34
6.2 Examined databases systems . 34
6.3 Neo4j . 34

6.3.1 Query Language . 34
6.3.2 Scalability . 36
6.3.3 Availability & Community . 37

6.4 OrientDB . 38
6.4.1 Query Language . 38
6.4.2 Scalability . 39
6.4.3 Availability & Community . 40

6.5 Comparison . 40
6.5.1 Query Language . 40
6.5.2 Scalability . 41
6.5.3 Support . 41
6.5.4 Operational DBMS . 41
6.5.5 Summary . 41

7 No NoSQL Databases 42

8 Experimental part 43
8.1 Scenario . 43
8.2 Experiment set-up . 43

8.2.1 Benchmark queries . 43
8.3 Implementation . 43

8.3.1 Data-set import . 44
8.4 Results . 46

8.4.1 Assumptions . 46
8.4.2 Time-series positioning per player . 46
8.4.3 Times-series positioning per team . 48
8.4.4 Position overlapping . 50
8.4.5 Average speed per player . 51
8.4.6 Team formation by player’s median positioning 53

9 Discussion 55
9.1 SQL vs NoSQL . 55
9.2 MySQL vs MongoDB . 55
9.3 Summary . 57

6

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

10 Future Work 58
10.1 NoSQL DBMS . 58
10.2 Input . 58

7

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

8

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

1 INTRODUCTION

1.1 THE NEED OF DATABASE MANAGEMENT

Since the begging of computer age, the most crucial and essential component regarding com-
puter’s performance has been the memory. More specifically, the manner in which the infor-
mation is organized inside the memory, can conclude either the success either the disaster
of any computation attempt. Nowadays, data management is a hot topic, since almost any
application is relied to data, which size increases exponentially according the time. From
simple web sites to complex business analyst tools, different types of data should be pro-
cessed, stored and retrieved, in a efficient and accurate way. As a result, the systems, which
operate over data must be adaptive, responsive, efficient and accurate as well.

1.2 WHAT IS DATABASE MANAGEMENT SYSTEM

Any system, which operates on data management is called Database Management System
(DBMS). This kind of systems is characterized as a high-level software, which cooperates with
low-level interfaces, aiming on data storage and querying. More specifically, a DBMS assists
the user to handle enormous collections of data, which are stored in the hard drive. Because
of the fact that a data collection does not have standard shape or size, a lot of DBMS have
been developed, during the years in order to assist in dealing with this variety in data format.
Consequently, there are dozens of solutions, which have been developed, according the time
and offer different approaches in data management, according to user’s needs. However,
only a relatively small set became popular and stay in use for a longer time. Precisely, the
most popular DBMS all this time is the Structured Query Language (SQL) database systems.

1.3 WHAT IS A SQL DATABASE SYSTEM

Structured Query Language (SQL) databases are the primary data storage mechanism in re-
cent times. An SQL database is based on the relational algebra schema, which organizes the
data into tables with specific structures and attributes. Nowadays, there are a lot of versions
of SQL database systems such as MySQL, PostgreSQL and SQLite. These specific versions of-
fer various functions and tools regarding data management and consists of the biggest piece
of the pie chart of popular database systems.

However, the new trends in web applications and the increase of data size, unravel new
needs, which demand new approaches in data management. On the other hand, the idea
of SQL appeared four decades before, when the data needs and the application were differ-
ent. As a result, in order to solve these different kind of problems, for decades SQL databases
evolve and new software have been developed along with the new trends in computer appli-
cations. Unfortunately, there are still needs that an SQL database cannot treat efficiently and
accurate.

9

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

1.4 WHAT IS A NOSQL DATABASE SYSTEM

The evolution of needs demand the evolution of solutions. A new trend in database manage-
ment suggests NoSQL databases as a solution in many data handling demands. NoSQL gain
traction day by day, offering an alternative way on data management with popular options
such as MongoDB, CouchDB and Apache Cassandra.

The main characteristic of the NoSQL databases is the fact that they operate to data with-
out using the traditional relational algebra schema. Thus, a NoSQL user has the ability to
interact with data without having to define or deal with a predefined structured schema. In
addition, NoSQL databases run on clusters, which means that they distribute data to multi-
ple database instances with no shared resources. As a result, in contrast with SQL databases,
the stored data can be reproduced and copied to more instances and be supported by more
than one servers. NoSQL databases interesting for investigation for two major reasons:

Productivity During application’s development, much effort is put, on mapping the input
data in structured schema. A lot of assumptions take place and a lot diagrams are cre-
ated in order to produce the best relational schema for the data. By using schema-less
NoSQL database management systems, the database system adapts its schema to the
data and not the data to the schema. More specifically, NoSQL database offers a data
model that fits to the application’s need. As a result, a programmer spends his effort on
other aspects instead of trying to simplify the data, in order to fit in a standard schema.

Scalabilty According the time, the size of data is increased in terms of volume. As a result,
the requirement of fast and efficient querying becomes more expensive. The main rea-
son is the fact that SQL databases run on a single server. On the other hand, NoSQL
databases run on clusters and thus they can split the load into two or more servers. As
a result, the demand of large-scale data handling can remain cheap.

1.5 SQL VS NOSQL

SQL and NoSQL databases are different instances of the same solution. In data world, there
problems that SQL databases seems to be ideal and problems that NoSQL databases treat bet-
ter. The main difference between SQL and NoSQL databases is the fact that NoSQL databases
offer a variety of stores. Each store is different than the other and is built to treat a specific
problem. Thus, a NoSQL database can be introduced as a specialist for a specific problem.

Nowadays, in data science field, there are a lot and different challenges and even more
situations of problems. SQL databases consists of a general solution, which does not adapt to
the problem that solves. On the other hand, NoSQL databases consists of a "tool case", which
offers the proper tool according the problem.

In this work, an attempt has been made to investigate, which flavor of NoSQL database is
more appropriate for each situation and which are their similarities with the SQL databases.
In a later follow-up chapter, an input data scenario is introduced to which we determine the
optimal choice. More specifically, in the following chapters, there will be an introduction
of the most relevant NoSQL database management systems and the logic behind how these
databases organize the data.

10

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

2 CONCEPT IDEA

The intention of this work is to define which type of store is the most appropriate for a spe-
cific input. More specifically, this specific input is a data-set related to professional football
analytics and is described in details in Chapter 3. According to this data-set,the most popular
NoSQL stores will be examined, in terms of scalability and productivity.

2.1 SCALABILITY

In recent times, many sub-fields of scientific community define scalability as the capability of
a system to amplify in order to fulfill new requirements and demands. For instance, scaling a
web-based application is the process regarding allowing more people to use this web-based
application. However, the term scalability is inherently a bit amorphous and typically de-
pendent on a specific use case. Within this discussion, scalability is defined as the ability to
add computational resources to a database in order to gain more throughput. Regarding this
definition, there are two major types of scalability available - vertical and horizontal.

Vertical scalability indicates the increase of the resources within the same logical unit to
increase the capacity. For instance a vertical scalability action involves moving from one ma-
chine to another that has more capacity (RAM, CPU, storage or a combination of these re-
sources). Thus, it is obvious that this approach is more naive and scaling a database vertically
is expensive in both financial outlay and resource dedication. In considering financial out-
lay, larger, more robust hardware is expensive to acquire and operate. In terms of resource
dedication, if there are any requirements for maintaining up-time, significant operational
planning and effort are usually required to migrate to the new system. If the volume of data
is large, then the physical transfer from the old system to the new can take an inordinate
amount of time depending on the load.

In contrast, a system is horizontal scalable if hardware can be added incrementally. More
specifically, for more capacity, additional hardware should be added. In an ideal horizontally
scalable system, addition of hardware should provide linear increases in capacity available
without reconfiguration or downtime required of existing nodes [1]. The difference between
these two approaches can be visualized by the Figure 2.1.

2.2 PRODUCTIVITY

As productivity, it is defined how handy and useful the database software is. More specifically,
with the term productivity, the tools that a database system offers to its user to assist him, are
indicated. Productivity consists of a major metric of evaluation, because a more friendly-user
system is more preferable than another one, even with more utilities and better performance
[2]. Examples of productivity of a database system is the practicality of this database’s query
language and the database’s availability in terms of supported libraries and forums.

Regarding the query language, an important notion should be mentioned. Considering
the topic of this study, as in database systems, there is no ideal query language, which will
fit the needs for all possible developers under all possible conditions. Because of the fact
that humans and problem domains vary, it seems impossible to create a metric, which will

11

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Figure 2.1: Vertical vs Horizontal Scalabilty [3]

indicate if a query language is better than another one. As a result, the actual metric, which
will be used on query language evaluation, is the similarity of this specific language with the
SQL query language, since SQL is standard for decades.

2.3 METRICS

As it is mentioned in the previous sections, each store will be examined according its scala-
bility and its productivity. More specifically, the examined stores are investigated, in terms
of:

• Scalability: In scalability sections an attempt is made to investigate how each store can
scale, with priority to horizontal scale.

• Query language: Each query language section consists of an introduction to query lan-
guage of a specific store. The basic queries are introduced in a form of tutorial and
when the query language is not similar to SQL, an attempt is made to parallel the basic
commands with the SQL ones.

• Users community: Users community section introduces the available communities for
each data store. More specifically, the research focuses on the popularity and the size
of each community.

• Availability: This section is presented with the previous one, as one sub-chapter and
it focuses on third party libraries and drivers that support programming languages.

12

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

3 EXAMINED DATA-SET

3.1 SOCCER VIDEO AND PLAYER POSITION DATA-SET

In the paper "Soccer Video and Player Position Data-set"[4], an attempt is made to present
a data-set of body-sensor traces and corresponding videos from several professional football
matches. More specifically, this data-set has been obtained from football matches, which
took place in the home ground of the Norwegian professional team Tromso IL, during Novem-
ber 2013. Precisely, during the matches, all the players of Tromso IL were recording their po-
sitions with a use of a GPS device. The input data-set is obtained by the Europa League Group
stage match (Group K) on Thursday 7th November 2013 at 21:05CET in Alfheim, Tromso.

In order to elaborate the process; each player was wearing a belt during the match and a
tracking system was providing his speed, his acceleration his force and his coordinates on the
field, followed by his ID and a time-stamp [4]. Each player’s position was measured at 20 Hz
using the ZXY Sport Tracking system.

More specifically, ZXY tracking system provides a two-dimensional positional coordinate
system; which is calibrated to a station. At Alfheim stadium (home ground of Tromso IL), the
coordinate system looks like the positive part of a Cartesian space. The positive x-axis points
southwards parallel along the long side of the field, while the positive y-axis points eastwards
parallel with the short edge of the field, as shown in Figure 3.1.

Figure 3.1: Layout at the Alfheim Stadium [4]

As we can see, the position (0,0) is located in the north-western corner of the football field,
which from the position of the cameras is the lower-left corner. The football pitch is 105x68
meters wide and as a result the valid in-field values for the data set fields x_pos and y_pos are
in the values range of 0 ≤ x_pos ≤ 105 and 0 ≤ y_pos ≤ 68.

13

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

3.2 DATA-SET FORMAT

The logs extracted from the ZXY Sport Tracking system are stored in files. Each line of a file
contains one time-stamped record from exactly one belt. Belts are uniquely identified by a
tag-id, and each player had been wearing only one belt. The tag-ids had been randomized
for each game to provide a higher-level of anonymity to the players. The data records The are
saved in a file, which is CSV (comma-separated values) format and have the following format:

time (string) - Local Central European Time (CET) time encoded as ISO-8601 format.

tag_id (int) - The sensor identifier.

x_pos (float) - Relative position in meters of the player in the field’s x-direction.

y_pos (float) - Relative position in meters of the player in the field’s y-direction.

heading (float) - Direction of the player is facing in radians.

direction (float) - Direction of the player is traveling in radians.

energy (float) - Estimated energy consumption since last sample.

speed (float) - Player speed in meters per second.

total (float) - The number of meters traveled so far during the game.

A sample of the recorded values is presented below by the Figure 3.2.

Figure 3.2: Samples obtained by the 20 Hz GPS sensor traces [4]

The logs from the ZXY Sport Tracking system, which will be used in this research have the
form which is presented in table 3.1. More specifically, this is the data-set which will be used
in any experiment during this work.

Table 3.1: Input data-set format

time tag_id x_pos y_pos heading direction energy speed total
2013-11-[..] 6 50.173 7.49273 -2.74995 2.78075 1098.31 1.92885 1073
2013-11-[..] 1 62.769 13.7037 -1.91762 1.68409 1151.91 0.94616 871.1
2013-11-[..] 4 66.44 34.7657 -2.02796 2.28517 1215.87 0.8955 832.4
...

14

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

4 DOCUMENT STORES

The first examined kind of storage refers to document stores. The structural node of a doc-
ument store is the document. In a document database, documents are the smallest units,
consisting of a collection, which build the entire database, in the same trend. The structure
of this schema can be seen in Figure 4.1:

Figure 4.1: A document database contains collections of JSON documents [6]

If we would like to make a parallelism, a document is equivalent to a row in a SQL table.
and, in the same fashion, a SQL table is equivalent to a collection in a document database.
However, there is one significant difference. In contrast with a record in a SQL table, a docu-
ment of a collection does not need to be in the same form as the rest of the documents. More
specifically, each of them can have different structure with different fields [5]. For instance,
let’s consider the collection of TU Eindhoven students, which is presented by the Figure 4.

15

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

In this example, it is obvious the fact that while the three documents all represent people
and their birth locations, the representative models are different. A significant difference
between a key-value store and a document store is the fact that a document stores embeds
attribute metadata associated with stored content. This architecture provides a way to query
data based on the contents. As a result, in the above example, a user could search for all
documents in which attribute "City of Birth" is "Eindhoven" that would deliver a result set
containing all documents associated with any "name" that is in this particular city [6].

4.1 SUITABLE CASES

Document databases are suitable for 4 kind of cases [7]:

Event logging Many kinds of applications have logging needs. However, not all of them
have the same ones. A document database can store all these different types of events
because of its schema and become a central store for them.

Content management systems and Blogging platforms Because of their schema docu-
ment databases can understand JSON documents, which are the most common in con-
tent management systems and applications such as web-sites for blogging.

Web analytics and Real-time analytics Since there is no need for schema changes when
there are new incoming data, document databases are suitable for tracking metrics in
real-time conditions.

E-commerce applications E-commerce use to need flexible databases which can evolve
with not expensive costs.

4.2 UNWARRANTED CASES

On the other hand there are cases, when a document database is not the most efficient solu-
tion [7].

Event logging Many kinds of applications have logging needs. However, not all of them
have the same ones. A document database can store all these different types of events
because of its schema and become a central store for them.

Content management systems and Blogging platforms Because of their schema docu-
ment databases can understand JSON documents, which are the most common in con-
tent management systems and applications such as web-sites for blogging.

EXAMINED DATABASES SYSTEMS

In the following sub-chapters, three document stores are introduced:

• MongoDB

• Azure DocumentDB

• Apache Cassandra

16

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

4.3 MONGODB

As the official website claims "MongoDB is a document database that provides high perfor-
mance, high availability, and easy scalability" [8]. Implemented in C++, MongoDB is a prod-
uct of MongoDB Inc, which released first time in 2009 [9]. Its data schema has the same
structure with the general document store. A MongoDB database includes a set of collec-
tions. Each collection includes a set of documents. Every document is a set of key-value pairs
and has the introduced above dynamic schema. Dynamic schema means that a collection of
documents is able to hold different types of data. The investigated MongoDB release is the
2.4, 2014.

4.3.1 QUERY LANGUAGE

MongoDB queries are represented with a JSON structure. In order to build a query, a doc-
ument with the preferred to be shown properties needs to be built up. This specific docu-
ment will be compared with the database records and the results that match will be projected.
Something that must be mentioned is the fact that MongoDB treats each property as having
an implicit boolean AND and, in addition, it supports also boolean OR queries. In addition to
exact matches, MongoDB has operators for greater than and less than, regarding values with
order. [10] A sample query document, which is useful to understand the above description,
is the following:

q = {" f i r stname" : "Bob"}

The above query q matches all documents in a collection with firstname equal to "Bob". If
there is need to retrieve all documents with firstname "Bob" AND city of birth "Eindhoven",
the query q would have the following form:

q = {" f i r stname" : "Bob",

"st ate" : "Noor d −Br abant"}

Something that must be mentioned is the fact that the comma inside the query q repre-
sents the logic AND. Taking into account the situation that we wanted to retrieve all docu-
ments with a age value of greater than 18, we would write:

q = {"ag e" : {"$g t" : 18}}

All the above queries can be implemented with the use of db.col l ect i on. f i nd() method.
This specific method retrieves documents from a collection and returns a cursor to the re-
trieved documents. For instance, if we would like to retrieve from a collection with named
"students", all the students with their year field with value less than 1994, the syntax would
be the following:

db.student s. f i nd({year : {$l t : 1994}})

17

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

4.3.2 SQL TO MONGODB MAPPING

The biggest portion of data science community started learning the database technology with
the use of relational databases such as SQL. Because of this fact, in this chapter an attempt
is made to map SQL’s query language to MongoDB’s query language, in terms of basic com-
mands. The following table presents the various SQL terminology and concepts and the cor-
responding MongoDB terminology and concepts:

Table 4.1: SQL terminology & concepts to the corresponding MongoDB ones.

SQL Terms/Concepts MongoDB Terms/Concepts
database database
table collection
row document
column field
index index
table joins embedded documents and linking
primary key primary key
Specify any unique column
or column combination as primary key.

In MongoDB, the primary key is
automatically set to the _id field.

aggregation (e.g. group by) aggregation pipeline

The following table provides an overview of common SQL aggregation terms, functions,
and concepts and the corresponding MongoDB aggregation operators:

Table 4.2: SQL aggregation terms, functions & concepts into MongoDB ones.

SQL Terms, Functions, and Concepts MongoDB Aggregation Operators
WHERE $match
GROUP BY $group
HAVING $match
SELECT $project
ORDER BY $sort
LIMIT $limit
SUM() $sum
COUNT() $sum

JOIN
No direct corresponding operator;
however, the $unwind allows for
somewhat similar functionality.

18

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

4.3.3 SCALABILITY

Taking into consideration the year 2016, thousands companies and organizations use Mon-
goDB in order to construct top-performance systems at scale. More specifically, the number
of web companies that rely their projects on MongoDB, increases according the time. These
project have a variety of needs: from single server to cloud clusters with over a thousand
nodes, executing millions of operations per second over petabytes of data [11]. The official
web-page of MongoDB claims that MongoDB fulfills the following aspects in terms of scala-
bility:

• Cluster Scale. Companies such as EA Sports FIFA, eBay and Sporting Solutions "dis-
tribute their database across 100+ nodes, often in multiple data centers" [11].

• Performance Scale. Foursquare, AHL and many more companies "Sustain over 100,000
database read and writes per second while maintaining strict latency SLAs" [11].

• Data Scale. McAfee Global Threat Intelligence, Adobe and CARFAX "store over one
billion documents in their database" [11].

Scaling of MongoDB can be done via Ops Manager, included with MongoDB Enterprise
Advanced. This software offers many powers like the ability to deploy and scale shared clus-
ters across multiple data centers. In addition with this Manager, MongoDB directors try to
support users officially with guides and tutorials regarding scalability at offering the follow-
ing link:

https://www.mongodb.com/collateral/mongodb-performance-best-practices

4.3.4 AVAILABILITY & COMMUNITY

MongoDB and mongodb.org supported drivers is an open source software, which is hosted
at Github. This is the reason that its community is large in terms of active members and
activities [13] [14] [15] [16] [17]. In addition, MongoDB community encourages the user to
join them using the following web-page: https://www.mongodb.org/get-involved.

Regarding third party libraries, MongoDB supports the following programming languages
offering proprietary protocol using JSON.

• Actionscript

• C

• C#

• C++

• Clojure

• ColdFusion

• D

• Dart

• Delphi

• Erlang

• Go

• Groovy

• Haskell

• Java

• JavaScript

• Lisp

• Lua

• MatLab

• Perl

• PHP

• PowerShell

• Prolog

• Python

• R

• Ruby

• Scala

• Smalltalk

19

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

4.4 AZURE DOCUMENTDB

Azure DocumentDB is a NoSQL document database designed, by Microsoft, and released on
2014. DocumentDB is a service, which is built up from the ground up in order to support
JSON and JavaScript. DocumentDB’s data model is the same as the general schema which
is introduced in the beginning of this Chapter [chapter 4]. As a result, every record inside
this database is stored as a JSON document. The official documentation describes it as the
"right solution for applications that run in the cloud when predictable throughput, low la-
tency, and flexible query are key". A well-known user of DocumentDB is the Microsoft MSN,
which supports daily millions of users [18].

4.4.1 QUERY LANGUAGE

Users of DocumentDB service use an extended subset of SQL, in order to query information
from the database. To clarify this, the following example is considered:

Consider a JSON document, which refers to a person. This simple JSON document is
about a student of a university, with name "Bob". The document has strings, numbers,
boolean, arrays and nested properties. All these aspects can be seen in Figure 4.2:

Figure 4.2: The JSON document that represents the student "Bob".

In order to retrieve the university in which student Bob studies, the query that will be built,
will be following the regular SQL syntax rules. More specifically, this specific

SELEC T s.university

F ROM students s

W HERE s.name = "Bob"

As a database user who knows SQL can probably Figure out that

• SELECT requests the value of the element university

• FROM indicates that the query should be executed against documents in the students
collection

20

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

• WHERE specifies the condition that documents within that collection should meet

The query’s result is university attribute for Bob formatted as JSON data:

{

"uni ver si t y" : Eindhoven university of Technology

}

4.4.2 SCALABILITY

A single DocumentDB database can scale practically to an unlimited amount of document
storage partitioned by collections. As a result, there is no special treatment regarding scala-
bility and the user can scale just by adding more collections.

Each collection provides 10 Gigabytes of storage, and an variable amount of throughput.
A collection also provides the scope for document storage and query execution; and is also
the transaction domain for all the documents contained within it [20].

4.4.3 AVAILABILITY & COMMUNITY

Azure DocumentDB is a service for commercial use. As a result, its community is smaller
than MongoDB or Cassandra. However, Microsoft provides professional support to each user.
DocumentDB can be used within Windows and Linux environments and up to now the sup-
ported programming languages are:

• .Net

• C#

• Java

• JavaScript

• Python

Whatever choice the developer makes, the client accesses DocumentDB through RESTful
access methods. A developer can use these to work with documents in a collection in a few
different ways [19]. These options are presented bellow:

• Using these access methods directly for create/read/update/delete (CRUD) operations.

• Submitting requests expressed in DocumentDB SQL.

• Defining and executing logic that runs inside DocumentDB, including stored proce-
dures, triggers, and user-defined functions (UDFs)

21

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

4.5 APACHE CASSANDRA

Apache Cassandra is an open source distributed database management system designed to
handle large amounts of data across many servers. Cassandra is document store that offers
robust support for clusters spanning multiple data-centers, with asynchronous master-less
replication allowing low latency operations for all clients and with a high value on perfor-
mance. Consisting of a massively scalable NoSQL database, Cassandra can be found at com-
panies that focus on big data, such us Amazon, Google and Facebook.

The architecture of Cassandra makes this NoSQL database to be able to scale, perform,
and offer continuous availability because of the fact that it has been built from the ground up
with the understanding that hardware and system failures can and do occur. This assump-
tion concludes that Cassandra uses a different way of managing and protecting data than the
traditional relational database management systems.

Cassandra has a peer-to-peer distributed architecture which is easy to set up and main-
tain. In a Cassandra database system, all nodes are the same in a sense that there is no con-
cept of a master node and all nodes communicate with each other via a protocol. With the
use of this architecture Casandra is capable of handling petabytes of information and thou-
sands of concurrent users/operations per second as easily as it can manage much smaller
amounts of data and user traffic. Moreover, unlike to other systems, Cassandra has no single
point of failure and therefore is capable of offering real and continuous availability [21].

4.5.1 QUERY LANGUAGE

In comparison with MongoDB and DocumentDB, the main difference is that Cassandra does
not support joins or subqueries, except for batch analysis through Hive. Instead, Cassandra
emphasizes denormalization through CQL features like collections and clustering specified
at the schema level.

CQL is the recommended way to interact with Cassandra. CQL is a mechanism ,which
consists of statements and is similar to SQL. As in SQL, some statements directly change data,
other look up data, and some other change the way data is stored. The simplicity of reading
and using CQL is an advantage over older Cassandra APIs. The main goal of this approach is
to give the end user a familiar feel of working with SQL. Additionally CQL is useful in knowing
the information related to cluster, Keyspaces structure. And it also provides commands to
read the TTL(Time To Live) for data and many other much useful information

In order to understand how CQL works, let’s consider the following example. From a
database there is a need to retrieve all students with the name Bob and age 22 years old.
In order to retrieve these results, we have to use the SELECT command.

SELEC T *

F ROM users

W HERE name = ’Bob’ AND age = 22;

Similar to a SQL query, the user can use the WHERE clause and then the ORDER BY clause
to retrieve and sort results.

22

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

4.5.2 SCALABILITY

The official web-page introduces Apache Cassandra database as the "right choice when you
need scalability and high availability without compromising performance" [22]. More specif-
ically, directors advocate that Cassandra’s linear scalability and its fault-tolerance on com-
modity hardware or cloud infrastructure indicate it as the best platform to process mission-
critical data [22].

Apache Cassandra fulfills the obligations of an ideal horizontally scalable system, in a
sense that allows seamless addition of nodes. As a result, if there is a need for more capacity,
extra nodes can be added to the cluster and then this cluster will utilize the new resources
automatically [1].

An example which proves that Cassandra adapts easily and effective on scale require-
ments is Netflix. Netflx has been rolling out the Apache Cassandra NoSQL data store for pro-
duction use. Benchmark tests validated that Cassandra tends to outpace its NoSQL competi-
tors in performance for many use cases [23]. As it mentioned in 2012 at Very Large Database
Conference in Istanbul: "In terms of scalability, there is a clear winner throughout our exper-
iments. Cassandra achieves the highest throughput for the maximum number of nodes in all
experiments with [linearly] increasing throughput from 1 to 12 nodes [21].

4.5.3 AVAILABILITY & COMMUNITY

Cassandra does not have any official forum for its users. The official web-page provides
a mailing list [http://www.mail-archive.com/user@cassandra.apache.org/], with the hottest
topics. However, the format is not modern and the navigation is not satisfying. In addition
with this datastrax offers a big variety of tutorials regarding Cassandra [http://academy.datastax.com/]
and for problem-solving questions, the popular StackOverFlow [http://stackoverflow.com/]
can be an option.

Regarding third party libraries, Apache Cassandra supports the following programming
languages:

• C#

• C++

• Clojure

• Erlang

• Go

• Haskell

• Java

• JavaScript

• Perl

• PHP

• Python

• Ruby

• Scala

23

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

4.6 COMPARISON

In this chapter an attempt is made to identify which document store fulfills better the most
common requirements according to developers.

4.6.1 QUERY LANGUAGE

Regarding, query language, two sets can be introduced. The former contains Azure Docu-
mentDB and Apache Cassandra and the latter contains MongoDB. The document stores of
the first set let user to use a subset of SQL when there is a need of query. This feature is some-
times crucial because many developers feel more familiar with a new technology, when this
technology uses aspects from the previous one. As a result, a data-scientist with a basic SQL
background can start using Azure DocumentDB and Apache Cassandra immediately. On the
other hand, MongoDB has its own query language which is different in terms of syntax than
the well-known SQL syntax. However, a developer who can implement basic SQL queries as
the examples above, would be able to start querying with not so much effort.

4.6.2 SUPPORTED DRIVERS

According to supported drivers and programming languages, MongoDB first and then Cas-
sandra, consist of an ideal option. Unfortunately, and because of the fact that Azure Doc-
umentDB is not an open-source software, the supported languages are limited. As a result,
MongoDB and Cassandra are a step ahead because they support a big amount of program-
ming language, but practically this step is not so big, since Azure DocumentDB supports the
most used ones.

4.6.3 SUPPORT

Another metric, which can be taken into account is the support that each store offers to its
users. According to this aspect, MongoDB is the number one since it is the most popular
document store in database community. After MongoDB, the most popular document store
and the number eight of the most popular databases is Apache Cassandra [21]. Therefore,
using the axiom which claims "the more users the better support" MongoDB and Apache
Cassandra take lead against Azure DocumentDB. However, in recent times, Microsoft is a
leader company and its commercial use products come with professional support.

4.6.4 SUMMARY

To sum up, if we would like make a conclusion, this would be that MongoDB is the most pop-
ular document store which is free, open-source, with great support regarding programming
languages and huge community but with a different than SQL query language. As a result,
it consists of a good start for everyone who wants to introduce himself to document stores.
A good alternative, would be Apache Cassandra, which has the extra feature of using a sub-
set of SQL as query language. For developers, who prefer to rely on giants, Microsoft’s Azure
DocumentDB would be a option with no risk.

24

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

5 STREAM STORES

The second kind of stores that is introduced refers to stream. Stream stores look like more
to real-time business systems than to regular database systems. Since the previous decade,
computer science community was concerning about a kind of system, which can support
business intelligence tasks and perform analytics in real time. However, the existent tech-
nology was limiting every attempt of implementing this kind of systems. More specifically,
these data-warehousing environments that were offering high performance were also char-
acterized by high cost. On the other hand low budget systems were characterized by extreme
low performance and high latencies.

Nowadays, an amount of handy open source platforms have brought a new dawn on real-
time analytics. Two of the most popular systems are Apache Storm and Apache Spark. Both
of these stream stores, which consist of projects within the Apache Software Foundation, sup-
port real-time processing capabilities to a much wider range of potential users [25]. At the
moment that this research takes place, Apache Spark is a full, top level Apache project. On
the other hand, Apache Storm consists of a newborn project.

Both Apache Spark and Apache Storm are implemented in JVM based languages. More
specifically, the former is implemented in Scala (functional and object-oriented language)
and the latter in Clojure (a dialect of Lisp targeting the JVM providing the Lisp philosophy).In
this chapter an attempt is made to investigate, how these two tools provide overlapping ca-
pabilities and at the same time each of them has distinctive features and structure [28].

5.1 APACHE STORM

As it mentioned in introduction 5, a revolution in data processing takes effect, in recent times.
The existence technology has made possible the storage and the process on data at scales that
during earlier years were unreachable. However, these data processing technologies are not
real-time systems, nor are they meant to be. The reason is that a real-time data processing
occurs with a fundamentally different set of requirements than batch processing.

On the other hand, real-time data processing at massive scale arises more and more as a
requirement in business world. Apache Storm created to fulfill this requirement [27]. "Apache
Storm is a distributed, fault-tolerant, open-source computation system that allows you to
process data in real-time with Hadoop. Storm solutions can also provide guaranteed pro-
cessing of data, with the ability to replay data that was not successfully processed the first
time" [29].

In other words, Apache Storm is a real-time computational engine. A real-time computa-
tional engine which is open-source and works simple. More specifically, Apache Storm runs
continuously, consuming data from configured sources, which are named Spouts. These data
are passed down to the processing pipelines, which are named Bolts. The combination of
Spouts and Bolts consists of a Topology [28].

25

http://hadoop.apache.org/

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

5.1.1 ARCHITECTURE

The architecture of Apache Storm is based on a master/slave architecture. More specifically,
it consists of three unique types of nodes and each of them function differently in order to
process messages with guarantee [30]. These three nodes are introduced below:

• Nimbus: Nimbus consists of the master node. More specifically, Nimbus is a daemon
process, which is responsible for the deployment, managing, coordinating and mon-
itoring all the topologies that are executed on the cluster. One of Nimbus node basic
tasks is to assign and reassign the entire work when a failure occur. Moreover, this node
is responsible for the distribution of any required file to a supervisor node [30].

• ZooKeepers: ZooKeepers are the node, which connects Nimbus (master node) to Su-
pervisors (worker nodes). Taking into account that in this distributed environment
such as Apache Storm, centralized events and information coordinates are critical for
processes coordination. Apache ZooKeeper functions have the task of storing state’s
information such as assignments of work and job statuses between the master node
and the worker nodes [30].

• Supervisors: As it mentioned above, Supervisors consist of the worker-nodes. More
specifically, it is a daemon process that "spawns" new tasks and monitors the status of
the workers [30].

These three components collaborate as it is presented in Figure 5.1.

Figure 5.1: The architecture of Apache Storm [30]

26

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

In order to start doing real-time computation on Storm, we need to create "topologies". A
topology can be defined as a graph of computation. Inside a topology, every node contains
processing logic, and is linked with other nodes. These links between the nodes indicate the
way that data should be passed fro the one node to the other. All these components such us
the topologies and the nodes are essential to understand Apache Storm. For this purpose all
the terminology that is required is introduced below:

Topologies A simple Storm topology is illustrated, showing Spouts (referring to data sources)
and Bolts (referring to nodes related to stream processing logic). A Storm topology
could similar to a job of the traditional or batch processing systems. In order to iden-
tify the structure of a topology in Storm, we can claim that each topology is made up of
data streams, spouts and bolts. These topologies are deployed to and run by an Apache
Storm cluster [30].

Data Streams As data stream, a flow of data is defined. More specifically, a data stream is
an unbound stream of information (data) in a from of a collection of key/value pairs.
These data are the most basic data structure within storm [30] [32].

Spouts A spout is the entry point into a Storm topology. More specifically, it connects to a
source of data, then transforms the contained data into a tuple and at the end emits this
tuple for consumption and processing by one or more bolts [30] [32]. It is represented
by the water faucet in Figure 5.1.

Bolts A bolt is responsible for the transformation and the process of data within a topology.
Bolts receive data streams from spouts or other bolts as an input and they output none
or more data streams. Bolts process data and execute tasks such as calculations, aggre-
gations, filtering, joins and writes to external sources [30] [32]. It is represented by the
blue thunder in Figure 5.1.

Table 5.1 summarizes each component of Apache-Storm Architecture.

5.1.2 SCALABILITY

As a stream store, Storm can scale to a massive number of messages per second. In order to
achieve scale in a topology, two tasks must be done. The former is to increase the machines
of this topology and the latter to increase the parallelism settings of this specific topology,
as well. For instance, an example of Storm’s scale is following: one of Storm’s initial appli-
cations processed a million messages per second on a 10 node cluster, including hundreds
of database calls per second as part of the topology. Storm’s usage of Zookeeper for cluster
coordination makes it scale to much larger cluster sizes [30].

27

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Table 5.1: Storm Concepts [31]

Storm Concept Description

Tuple
A named list of values of any data type.
The native data,structure used by Storm.

Stream An unbounded sequence of tuples.
Spout Generates a stream from a real-time data source.

Bolt
Contains data processing, persistence, and messaging alert
logic. Can also emit tuples for downstream bolts.

Stream Grouping Controls the routing of tuples to bolts for processing.

Topology
A Storm application.
A group of spouts and bolts wired together into a workflow.

Processing Reliability Storm guarantee about the delivery of tuples in a topology.
Workers A Storm process. A worker may run one or more executors.

Executors
A Storm thread launched by a Storm worker.
An executor may run one or more tasks.

Tasks A Storm job from a spout or bolt.
Process Controller Monitors and restarts failed Storm processes.

Master/Nimbus Node

The host in a multi-node Storm cluster that runs a process
controller. The process controller is responsible for restarting
failed process controller daemons, such as supervisor
on slave nodes. The Storm nimbus daemon is responsible for
monitoring the Storm cluster and assigning tasks to slave nodes
for execution.

Slave Node

A host in a multi-node Storm cluster that runs
a process controller daemon, such as supervisor,
as well as the worker processes that run Storm topologies.
The process controller daemon is responsible for restarting
failed worker processes.

5.1.3 STORM USERS

Apache Storm users do not have an official form but a mailing list. A user in order to send
messages to this list should send an email to user@storm.apache.org. Subscription is done
by sending an email to user-subscribe@storm.apache.org and the canceling of this is done
by sending an email to user-unsubscribe@storm.apache.org. In addition to with the online
support are arranged. Some of them take place in London, Boston and New York [27]. A
topology can be written in any language including any JVM based language, Python, Ruby,
Perl, or, with some work, even C.

28

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

5.2 APACHE SPARK

Apache Spark is a cluster computing platform designed to be fast and general-purpose. On
the speed side, Spark extends the popular MapReduce model to efficiently support more
types of computations, including interactive queries and stream processing. Speed is im-
portant in processing large data-sets, as it means the difference between exploring data in-
teractively and waiting minutes or hours. One of the main features Spark offers for speed is
the ability to run computations in memory, but the system is also more efficient than MapRe-
duce for complex applications running on disk [33].

On the generality side, Spark is designed to cover a wide range of workloads that previously
required separate distributed systems, including batch applications, iterative algorithms, in-
teractive queries, and streaming. By supporting these workloads in the same engine, Spark
makes it easy and inexpensive to combine different processing types, which is often neces-
sary in production data analysis pipelines. In addition, it reduces the management burden of
maintaining separate tools [33].

Spark is designed to be highly accessible, offering simple APIs in Python, Java, Scala, and
SQL, and rich built-in libraries. It also integrates closely with other Big Data tools. In particu-
lar, Spark can run in Hadoop clusters and access any Hadoop data source, including Cassan-
dra [33].

5.2.1 ARCHITECTURE

The Spark project contains multiple closely integrated components. At its core, Spark is a
"computational engine" that is responsible for scheduling, distributing, and monitoring ap-
plications consisting of many computational tasks across many worker machines, or a com-
puting cluster. Because the core engine of Spark is both fast and general-purpose, it powers
multiple higher-level components specialized for various workloads, such as SQL or machine
learning. These components are designed to inter-operate closely, letting you combine them
like libraries in a software project [33].

A philosophy of tight integration has several benefits. First, all libraries and higher-level
components in the stack benefit from improvements at the lower layers. For example, when
Sparkśore engine adds an optimization, SQL and machine learning libraries automatically
speed up as well. Second, the costs associated with running the stack are minimized, because
instead of running 510 independent software systems, an organization needs to run only one.
These costs include deployment, maintenance, testing, support, and others. This also means
that each time a new component is added to the Spark stack, every organization that uses
Spark will immediately be able to try this new component. This changes the cost of trying
out a new type of data analysis from downloading, deploying, and learning a new software
project to upgrading Spark [33].

Finally, one of the largest advantages of tight integration is the ability to build applications
that seamlessly combine different processing models. For example, in Spark you can write
one application that uses machine learning to classify data in real time as it is ingested from
streaming sources. Simultaneously, analysts can query the resulting data, also in real time,
via SQL (e.g., to join the data with unstructured log-files). In addition, more sophisticated

29

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

data engineers and data scientists can access the same data via the Python shell for ad-hoc
analysis. Others might access the data in standalone batch applications. All the while, the IT
team has to maintain only one system [33].

Here we will briefly introduce each of Sparkś components, shown in Figure

Figure 5.2: The basic components of Apache Spark service [33].

The components of Figure 5.2 are described below:

Spark Core Spark Core contains the basic functionality of Spark, including components for
task scheduling, memory management, fault recovery, interacting with storage sys-
tems, and more. Spark Core is also home to the API that defines resilient distributed
data-sets (RDDs), which are Sparkś main programming abstraction. RDDs represent a
collection of items distributed across many compute nodes that can be manipulated
in parallel. Spark Core provides many APIs for building and manipulating these collec-
tions [33] [34].

Spark SQL Spark SQL is Sparkś package for working with structured data. It allows query-
ing data via SQL as well as the Apache Hive variant of SQL called the Hive Query Lan-
guage (HQL) and it supports many sources of data, including Hive tables, Parquet, and
JSON. Beyond providing a SQL interface to Spark, Spark SQL allows developers to in-
termix SQL queries with the programmatic data manipulations supported by RDDs in
Python, Java, and Scala, all within a single application, thus combining SQL with com-
plex analytics. This tight integration with the rich computing environment provided by
Spark makes Spark SQL unlike any other open source data warehouse tool. Spark SQL
was added to Spark in version 1.0. Shark was an older SQL-on-Spark project out of the
University of California, Berkeley, that modified Apache Hive to run on Spark. It has
now been replaced by Spark SQL to provide better integration with the Spark engine
and language APIs [33] [34].

30

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Spark Streaming Spark Streaming is a Spark component that enables processing of live
streams of data. Examples of data streams include log-files generated by production
web servers, or queues of messages containing status updates posted by users of a web
service. Spark Streaming provides an API for manipulating data streams that closely
matches the Spark Coreś RDD API, making it easy for programmers to learn the project
and move between applications that manipulate data stored in memory, on disk, or ar-
riving in real time. Underneath its API, Spark Streaming was designed to provide the
same degree of fault tolerance, throughput, and scalability as Spark Core [33] [34].

MLlib Spark comes with a library containing common machine learning (ML) functionality,
called MLlib. MLlib provides multiple types of machine learning algorithms, including
classification, regression, clustering, and collaborative filtering, as well as supporting
functionality such as model evaluation and data import. It also provides some lower-
level ML primitives, including a generic gradient descent optimization algorithm. All
of these methods are designed to scale out across a cluster [33] [34].

GraphX GraphX is a library for manipulating graphs (e.g. a social networkś friend graph) and
performing graph-parallel computations. Like Spark Streaming and Spark SQL, GraphX
extends the Spark RDD API, allowing us to create a directed graph with arbitrary prop-
erties attached to each vertex and edge. GraphX also provides various operators for ma-
nipulating graphs (e.g., sub-graph and map-Vertices) and a library of common graph
algorithms (e.g. PageRank and triangle counting) [33] [34].

Cluster Managers Under the hood, Spark is designed to efficiently scale up from one to
many thousands of compute nodes. To achieve this while maximizing flexibility, Spark
can run over a variety of cluster managers, including Hadoop YARN, Apache Mesos,
and a simple cluster manager included in Spark itself called the Standalone Scheduler.
If you are just installing Spark on an empty set of machines, the Standalone Scheduler
provides an easy way to get started; if you already have a Hadoop YARN or Mesos clus-
ter, however, Sparkś support for these cluster managers allows your applications to also
run on them [33] [34].

5.2.2 SPARK USERS

Because Spark is a general-purpose framework for cluster computing, it is used for a diverse
range of applications. However, two major groups can be defined; the data scientists and
the engineers. Of course, these are imprecise disciplines and usage patterns, and many folks
have skills from both, sometimes playing the role of the investigating data scientist, and then
âĂIJchanging hatsâĂİ and writing a hardened data processing application. Nonetheless, it
can be illuminating to consider the two groups and their respective use cases separately.
The official Spark community can be found at https://spark.apache.org/community.html. As
Storm, Spark offers a mailing list for its users. The following email addresses offered [36]:

• user@spark.apache.org is for usage questions, help, and announcements.

• dev@spark.apache.org is for people who want to contribute code to Spark.

31

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

5.3 COMPARISON

Comparing these two systems, if the requirements are primarily focused on stream process-
ing and CEP-style processing regarding a greenfield project with a purpose-built cluster for
the project, then Storm is probably the choice - especially when existing Storm spouts that
match integration requirements are available. This is by no means a hard and fast rule, but
such factors would at least suggest beginning with Storm. On the other hand, if the case is
the leveraging of an existing Hadoop or Mesos cluster and/or if this process needs involve
substantial requirements for graph processing, SQL access, or batch processing, then Spark
could be the first step.

Another factor to consider is the multilingual support of the two systems. For example,
if there is a need to leverage code written in R or any other language not initially supported
by Spark, then Storm has the advantage of broader language support. By the same token, if
there is a requirement of having an interactive shell for data exploration using API calls, then
Spark offers a feature that Storm does not.

To sum up, usually users want to perform a detailed analysis of both platforms before mak-
ing a final decision. Because of the fact that these platforms are similar, it would be useful,
to build a small proof of concept - then run their own benchmarks with a workload that mir-
rors they anticipated workloads as closely as possible before fully committing to either. On
the other hand, of course, a user does not need to make an "either/or" decision. Depending
on the workloads, infrastructure, and requirements, a technical user may find that the ideal
solution is a mixture of Storm and Spark - along with other tools like Kafka, Hadoop, Flume,
and so on. Therein lies the beauty of open source.

32

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

6 GRAPH STORES

The third and last kind of storage, which is examined refers to a graph databases. More specif-
ically, a graph database, also called a graph-oriented database, is a type of NoSQL database
that uses graph structures for semantic queries with nodes, edges and properties in order to
represent and store data.

A graph database is consisted of by a collection of nodes and edges. Trying to make a par-
allelism with the relational databases schema, each node represents an entity and each edge
represents a relationship between two nodes. Consequently, every node, which is defined
by a unique identifier, a set of properties expressed as key/value pairs and a set of outgoing
edges and/or incoming edges. Regarding the edges, each edge is defined by a unique identi-
fier,a direction, a type, a start-node, an end-node and a set of properties. These aspects can
be seen in Figure 6.1:

Figure 6.1: An example of a graph structure schema 6.1

In this example, it is obvious the fact that there are two nodes that represent the students
Alice and Bob. Each student, has his/her attributes: id, name and age inside his/her node.
In addition with Alice and Bob, there is one more node which represents a student group for
students who play chess. A significant difference between a graph store and a document store
is the fact that the graph stores focus on the relationship between the nodes. More specifi-
cally, the edges that represent the relationship unravel information regarding the nodes. As a
result, in the above example, a user could search for all the nodes(people) that "Bob" "knows"
after the date 02/10/2001 or for all the nodes(groups) that "Bob" "is_member".

33

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

6.1 SUITABLE CASES

Graph databases are suitable for 3 kind of cases:

Connected Data Graph databases are ideal for interconnection analysis. Social media are
based on connections among the users, which can be represented efficient by a graph
database, offering the ability of data mining tasks. In general, graph databases are use-
ful for working with data in which is characterized by complex relationships and dy-
namic schemas.

Routed, Dispatch and Location-Based Services Considering the "Traveling salesman prob-
lem" [37], graph databases can assist efficiently with problems where the data can have
the form of a location or an address (node) and the relationship edges can represent a
distance. Distance and location attributes can be used in order to build a recommen-
dation system.

Recommendation Engines The connected graph, which is created by the data can be used
to express the association between a client and a potential product. More specifically,
regarding its connections, a node can be an ideal client for a product which its neigh-
bors use, in terms of preference similarity. In this manner, movie, book and restaurant
recommendation systems, which offer accurate suggestions to their users, can be built.

6.2 EXAMINED DATABASES SYSTEMS

In the following sub-chapters, three document stores are introduced:

• Neo4j

• OrientDB

6.3 NEO4J

Neo4j is an open-source graph database implemented in Java, by Neo Technology. The first
release of Neo4j became available in 2007 [38]. The official website claims that Neo4j is "the
World’s Leading Graph Database" because of its nature. More specifically, they support that
graphs are the ideal way to work with data, since they can express efficiently how the human
mind works [39]. The investigated Neo4j release is the 2.3.0, October 2015.

6.3.1 QUERY LANGUAGE

The query language of Neo4j is named Cypher. Cypher is defined as declarative, SQL-inspired
language which describes concepts and patterns in a graph database. More specifically, Cypher
provides the common actions: select, insert, update and delete from a graph database, with-
out requiring from the user to declare how to do it [40].

Nodes With Cypher ASCII-Art is used for the representation of the patterns. Precisely, nodes
are surrounded with parentheses. These parentheses look like the circles of the graph

34

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

schema. Each node can have an identifier for reference purposes. For instance, (p)
could be a identifier for people and (t) for things. However, it is recommended that
the identifier name should be long and more expressive for real-world queries, such us
(person) or (thing).

An example could be "find all the people and the things they like". In this case the
query would include the representative identifiers for the people and the things:

(p)−> (t)

The properties of the nodes can be accessed with the use of the ., such us p.name or
thi ng .color . The general structure is:

M ATC H (node) RETU RN node.pr oper t y

M ATC H (node1)−> (node2)

RETU RN node2.pr oper t y A, node2.pr oper t yB

Relationships Relationships provide additional information regarding the connections be-
tween the nodes. In the previous case, a node could be a person (p), but it may rep-
resent a supplier or a seller of a thing (t). As a result, relationships describe how the
nodes are related with each other.

In Cypher, a possible query could be "retrieve everyone who likes a thing". This pattern
could be described as

(p)− [: LI K E]−> (t)

and it retrieves all the nodes type of (p) that have a relationship typed LIKE with other
nodes type of (t).

Or generally:

M ATC H (node1)− [: REL_T Y PE]−> (node2)

As in nodes, the properties of the relationships can be accessed with the use of iden-
tifiers for relationships (in front of the :T Y PE). For example, in order to access the
information about a relationship such as a rating that a person gave to a thing about
how much he likes it, could be

M ATC H (p)− [how : LI K E]−> (t)

The general structure is

M ATC H (node1)− [r el : T Y PE]−> (node2)

RETU RN r el .pr oper t y

35

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Labels Labels are like stamps, which assign a role or a type to the nodes. So, with the use
of labels, for instance, people can be distinguished from companies. More specifically,
by matching for (p : Per son)− [: LI K E]−> (t), the database will return "John" and/or
"Anne" for example but not "Hasbro"-a well know company. Label general structure
looks like:

M ATC H (node : Label) RETU RN node

M ATC H (node : Label) W HERE node.pr oper t y = "value" RETU RN node

M ATC H (node1 : Label1)− [: REL_T Y PE]−> (node2 : Label2)

RETU RN node1, node2

6.3.2 SCALABILITY

In this section, the features that introduce Neo4j as a scalable database, in terms of horizontal
scalability, are described. The features are the following [42]:

Scalable Distribution Architecture This section indicates the need of availability to hor-
izontally scale a database’s records across multiple nodes. In Neo4j, the only option
which is supported is to replicate the complete database only. This feature which re-
stricts scalability to the capacity of a single node. More details can be found in The
Neo4j Manual v2.3.1 - Chapter 25 "High Availability".

Scaling Out - Adding Data Storage Capacity An important feature of a scalable database
is the ability to add new nodes into a cluster. More specifically, in a ideal database this
feature should be triggered automatically by the database, with the minimum overhead
and zero downtime. Consistent hashing (hash functions) is designed to minimize data
movement as capacity is scaled up (or down), and generally databases that support
consistent hashing will be able to utilize new resources with minimal data movement.
Databases that require significant administration to add capacity, or must be taken of-
fline, are likely to be much harder to scale and less available. In Neo4j, re-balancing of
data is: N/A - single server only. Details can in The Neo4j Manual v2.3.1 - Chapter 1
"Neo4j Highlights".

Request Load Balancing Load balancing of client requests is a fundamental scalability mech-
anism for evenly spreading request load across all available database resources. If a
database only provides static, fixed connections to its request handling processes, this
can inhibit scalability as client requests cannot be easily spread across database re-
sources, leading to hot spots. Load balancing approaches are either (1) client-based,
with each clients holding a pool of connections which it selects from using an ap-
proach such as round-robin, or (2) server-based, when an intermediary process in
the database intercepts client requests and load-balances them across replicated re-
sources. Server-based approaches can introduce bottlenecks if there are only a small,

36

http://neo4j.com/docs/stable/ha.html
http://neo4j.com/docs/stable/ha.html
http://neo4j.com/docs/stable/introduction-highlights.html
http://neo4j.com/docs/stable/introduction-highlights.html

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

restricted size pool of load balancing processes possible. In Neo4j, the following capa-
bility is provided: uses HTTP-based load balancers. Details can be found The Neo4j
Manual v2.3.125.8. - "Setting up HAProxy as a load balancer".

Granularity of Write Locks The granularity of write locks is an important scalability fea-
ture. Ideally only the data objects being updated by a request should be locked using a
fine grain locking algorithm. In some databases, coarser database ’page’ or ’collection’
level locking can severely impede the scalability of write loads. In Neo4j, data object-
level write locks are locks on updated objects only. Details can be found in The Neo4j
Manual v2.3.118.3. - "Default locking behavior"

Scalable Request Processing Architecture Bottlenecks in the request processing path for
reads and writes can rapidly become inhibitors for scalability in a big data system as
concurrent request loads increase. These bottlenecks are typically request or trans-
action coordinators that cannot be distributed and replicated, or processes that store
configuration state that must be accessed frequently during request processing. In
Neo4j, the request processing path is based on an external load balancer. Details can
be found The Neo4j Manual v2.3.125.8. - "Setting up HAProxy as a load balancer" [43].

6.3.3 AVAILABILITY & COMMUNITY

"Neo4j has the largest and most vibrant graph database community in the world. This re-
lease would not have been possible without a continuous stream of input from community
members. Neo4j 2.2 represents our largest beta to date, with participation from more than
two thousand users" claimed Philip Rathle (Neo Technology’s VP of Products) [41]. Neo4j
supports its users via

• Stackoverflow

• Google groups

• Licence customer support

Moreover there plenty of unofficial groups and forums, about Neo4j issues.
Regarding third party libraries, Neo4j supports the following programming languages [?]:

• Java

• .NET

• JavaScript

• Python

• Ruby

• PHP

• R

• Go

• Clojure

• Perl

• Haskell

37

http://neo4j.com/docs/stable/ha-haproxy.html
http://neo4j.com/docs/stable/ha-haproxy.html
http://neo4j.com/docs/stable/transactions-locking.html
http://neo4j.com/docs/stable/transactions-locking.html
http://neo4j.com/docs/stable/ha-haproxy.html

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

6.4 ORIENTDB

OrientDB is the second graph store, which is examined during this research. It is an open
source database that is written in Java and belongs to "Second Generation Distributed Graph
Database Systems". The main difference between First and Second generation Graph Databases
is the lack of features regarding Big Data requirements, such as multi-master replication,
sharing. In addition, OrientDB offers the flexibility of Documents. More specifically, it inter-
nally manages relationships like a traditional graph databases but can work also in schema-
less mode like a document database. As a result, OrientDB is a graph and a document database
at the same time [44].

As the official web-page claim "OrientDB is incredibly fast". More specifically, developers
advocate that "it can store around 220,000 records per second on a common hardware. Even
for a Document based database, the relationships are managed as in Graph Databases with
direct connections among records. You can traverse parts of or entire trees and graphs of
records in a few milliseconds. Supports schema-less, schema-full and schema-mixed modes.
Has a strong security profiling system based on user and roles and supports SQL among the
query languages. Thanks to the SQL layer, it’s straightforward to use for those skilled in the
relational database world" [44].

6.4.1 QUERY LANGUAGE

Users of OrientDB use an extended subset of SQL, in order to query information from the
database. As a result, instead of inventing an new query language, OrientDB querying takes
place with the widely used and well-understood language of SQL. Of course, the query lan-
guage of OrientDB is an extended version of SQL in order to support more complex graphing
concepts, such as Trees and Graphs. The fundamental concepts are introduced below:

SELECT The SELECT statement queries the database and returns results that match the
given parameters. For instance, earlier in Getting Started, two queries were presented
that gave the same results: BROWSE CLUSTER user and BROWSE CLASS User. Here is
a third option, available through a SELECT statement.

SELEC T F ROM User

Notice that the query has no projections. This means that you do not need to enter a
character to indicate that the query should return the entire record, such as the asterisk
in the Relational model, (that is, SELECT * FROM User).

Additionally, User is a class. By default, OrientDB executes queries against classes. Tar-
gets can also be:

Clusters To execute against a cluster, rather than a class, prefix CLUSTER to the target
name.

SELEC T F ROM C LU ST ER : User

38

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Record ID To execute against one or more Record ID’s, use the identifier(s) as your
target. For example:

SELEC T F ROM #10 3

SELEC T F ROM [#10 : 1, #10 : 30, #10 : 5]

Indexes To execute a query against an index, prefix INDEX to the target name.

SELEC T V ALU E F ROM I N DE X : di ct i onar y W HERE ke y =′ Jay ′

WHERE Much like the standard implementation of SQL, OrientDB supports WHERE con-
ditions to filter the returning records too. For example,

SELEC T F ROM User W HERE name LI K E ′l%′

This returns all User records where the name begins with l

6.4.2 SCALABILITY

OrientDB has the ability to be distributed across different servers and to be used in a differ-
ent manner in order to achieve the maximum of its performance, scalability and robustness.
OrientDB uses the open source "Hazelcast Open Source project" for clustering management.
For more information click on https://hazelcast.com/ OrientDB has a Multi-Master + Shared
architecture. As a result, all the servers are master and because of this feature horizontal scal-
ability and reliability are provided. More specifically:

Elastic Linear Scalability The master-slave technique often has a bottleneck. More specif-
ically, because of the fact there is only one master for a lot of slaves and because of
the fact that there is a big difference related to the entry point of data on master and
slave, while the master has multiple simultaneously threads inserting/updating/delet-
ing data, on the slave is just a single one responsible for deal with all these transactions.
By using OrientDB, throught put is not limited by a single server but there is a global
throughput, which is the sum of the all servers’ throughput. Thus, in case there is a
need to scale up, a server node can be simply added inside the network. This server
will automatically join the existing distributed server cluster with zero configuration.
As well with the join, synchronization occurs automatically as soon as the server is on-
line [45].

"Practically, this means that the transactional engine that can run in distributed sys-
tems supporting up to 302,231,454,903,657 billion (278) records for maximum capacity
of 19,807,040,628,566 petabytes of data distributed on multiple disks in multiple nodes"
[45].

Distributed Reliability Most NoSQL solutions are used as "cache" to speed up certain use
cases, while the master database remains a relational DBMS. For this reason, the av-
erage NoSQL product is built more for performance and scalability, while sacrificing
reliability [45].

39

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Perfect Cloud Database Solution According to the aforementioned benefits, OrientDB is
an ideal option for the Cloud. Hundreds of servers can split the workload, scaling hori-
zontally across distributed servers or data centers [45].

6.4.3 AVAILABILITY & COMMUNITY

OrientDB is offered in two editions. The former is the "Community Edition" and is free for
any use (Apache 2 license). The latter is named "Enterprise Edition" and is a product for
commercial use. Development of OrientDB Community Edition is supported by its users.
OrientDB User Community with more than one hundred contributors and more than three
thousand users world-wide.

OrientDB supports 3 kinds of drivers [46]:

• Native binary remote, which communicates directly with the TCP/IP socket using the
binary protocol

• HTTP REST/JSON, which communicates directly with the TCP/IP socket using the HTTP
protocol

• Java wrapped, as a layer, which links in some way the native Java driver. This is pretty
easy for languages that run into the JVM like Scala, Groovy and JRuby

In General OrientDB supports:

• Java (native) API

• JDBC driver

• NodeJS

• PHP

• .NET

• Python

• C

• Javascript

• Ruby

• Groovy

• Scala

• R

• Elixir

• Clojure

• OrientDB

• Perl

6.5 COMPARISON

In this chapter, an attempt is made to identify which graph store is more appropriate accord-
ing to the most common requirements.

6.5.1 QUERY LANGUAGE

Regarding, query language, the two stores are totally different. Neo4j introduces the user
to "Cypher"- its very own query language. As a result, a few or more training is required in
order to learn and understand the new language. On the other hand, OrientDB uses a query
language, which is built like SQL, with some additional plugins to operate on graphs. For
instance, considering there is a need to retrieve the name of Alice and all the groups that
participates in:

40

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

OrientDB

SELEC T N ame, out (′i s_member ′).N ame

F ROM Per son

W HERE N ame =′ Ali ce ′

Neo4j

M ATC H (student : Per son{name :′ Ali ce ′})− [: i s_member]−> (g r oup)

RETU RN student .name, g r oup.name

As a result data-scientists with SQL background find OrientDB more familiar than Neo4j.

6.5.2 SCALABILITY

Both of the stores -Neo4j and OrientDB- provide replication. The difference between Neo4j
and OrientDB is the fact that Neo4j uses a Single Master-Slave architecture: only one server
can be the master, at any moment. On the other hand, OrientDB offers Multiple Master archi-
tecture: all the servers are masters. As a result, OrientDB support linear scalability but Neo4j
not. This feature can be a huge potential bottleneck on write operations, since Neo4j would
not be able to scale.

6.5.3 SUPPORT

According to support that each store offers to its community, Neo4j has the advantage. Since
it is one of the most popular NoSQL stores, a lot of groups work on this and as a result, it
expands fast in terms of supported languages and forums. More specifically, Stackoverflow
is the main forum for Neo4j users. However, OrientDB offers also a big variety of language
drivers but its community is smaller than Neo4j.

6.5.4 OPERATIONAL DBMS

As indicates the name, NoSQL solutions, are usually used as a Not-only SQL component. For
instance, they exist as a "cache", in order to utilize specific cases or demands, while the main
database-system is still a relational DBMS. Thus, a lot NoSQL stores focus on performance
and scalability, instead of reliability. This can conclude that industry or scientific community
do not consider NoSQL DBMSs as trustworthy as Relational DBMSs. However, OrientDB,
by using a Write Ahead Logging technique, is able to restore a database after a crash. As
a result, it fulfills the ACID set properties and can roll back transactions [47]. This feature
makes OrientDB more interesting that Neo4j and the rest of NoSQL DBMSs.

6.5.5 SUMMARY

To sum up, if we would like make a conclusion, this would be that Neo4j is more popular
than OrientDB. Both of them offer great support regarding programming languages and huge

41

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

community. The fact that OrientDB has a query language similar to SQL makes it more ap-
propriate for a beginner. As a result, OrientDB could consist of a good start for everyone
who wants to introduce himself to graph stores. On the other hand, the bigger community
of Neo4j can offer more tutorials or support to a new user. Regarding, scalability OrientDB
has a slight advantage against Neo4j, but the purpose of our project might not use this extra
feature. In addition, the ACID behavior or OrientDB, could be considered as an extra feature
that some users could pay for it.

7 NO NOSQL DATABASES

In contrast with this study, there is a trend, which advocates that, sometimes, sticking with
the default may be the best solution for a data management problem. Nowadays, NoSQL
databases introduce themselves as the new trend in data management, by adding new fea-
tures in storage logic and by solving a lot of classic data management problems. However, in
many cases the traditional relational databases seems to be the ideal solution.

The advantages when a relational database is used are the following:

Well-known Each computer and data scientist is trained and aware of using a relational
database. More specifically, they know the fundamentals of a typical SQL database and
they can use it with almost no training in the most of the cases.

Mature Relational databases have already passed the rough tests of a new technology. There
are plenty of drivers and tools, which can connect them with the rest of the applications
and communities which can support the users. Moreover, there are no political issues
which should be taken into account regarding their use.

Still popular Taking into account that Facebook in year 2015 still uses a SQL database for
the storage of millions of records, we understand that a relational database can still
support the needs of an application, which intends to deal with big data.

As a result, according the problem and no matter if there is a NoSQL database, which
looks ideal for it, it’s necessary to investigate if the use of a relational database looks more
promising than the NoSQL one. As in every aspect in life, there in no solution which fulfills all
the obligations and especially in computer science "world", a technology never treats every
problem in a perfect way. Thus, before think about NoSQL databases we have to accept the
fact that the most of the times the best solution could be a simple SQL database, with all the
pros and cons that deliver.

42

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

8 EXPERIMENTAL PART

According to Chapter 7, SQL databases still consist of the ideal solution for a lot of data man-
agement problems. However, this report advocates that NoSQL stores are alternatives that
can "replace" SQL stores, in problems with specific demands. This section illustrates an ex-
periment which took place, in order to specify which solution fits better to the examined
data-set, which is introduced in Chapter 3.

8.1 SCENARIO

The scenario of the experiment focus on two major aspects. The former is time-line represen-
tation and the latter is performance analysis. According to these aspects, a set of benchmark
queries, as been built, which cover the a set of requirements regarding querying the input
data-set.

8.2 EXPERIMENT SET-UP

This specific experiment will focus on MongoDB and MySQL. The reason that these two
databases are chosen is their popularity. MongoDB is the most popular NoSQL store and
MySQL is the most popular non-commercial SQL store according to DB-Engines. More specif-
ically, these two data stores have been filled-up with a soccer video analysis data-set and then
a set of benchmark queries has been applied to these specific data stores.

8.2.1 BENCHMARK QUERIES

As it mentioned above, the set of the benchmark queries focuses on the time-line represen-
tation of the data-set and on the performance analysis. More specifically, there are seven
queries, which operate on the input data-set. These queries are the following:

1. Project the position of a player(s) in the field during the time

2. Project the position of the whole team in the field during the time

3. Project which players overlap their teammates positions

4. Project the average speed of the whole team

5. Project the median position of the team (formation) in the field

8.3 IMPLEMENTATION

The two data stores have been implemented by their DBMS for Linux. The system info are
the following:

OS Linux 4.4.0-28-generic, Ubuntu 16.04 LTS

CPU 4x Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz (862.589MHz)

43

http://db-engines.com/en/ranking

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

RAM 11.72GB

Regarding the data-stores, the following platforms have been installed:

MongoDB MongoDB shell version 2.4 and Robomongo have been installed. Robomongo
is a shell-centric cross-platform open source MongoDB management tool (i.e. Admin
GUI). Robomongo embeds the same JavaScript engine that powers MongoDB’s shell.

MySQL MySQL 5.7.12 and Workbench 6.3 have been installed.

8.3.1 DATA-SET IMPORT

The data-set, which is described in Chapter 3, has been imported in MongoDB and MySQL
database systems. In MongoDB database, the input data-set has been imported via Shell
commands, which are described by Figure 8.1.

$mongoimport -d Tromso -c tromso_anji -type csv -file tromso_anji_first.csv -headerline
Connected to: 127.0.0.1
Thu Jun 30 15:51:50.029 Progress: 16897601/50960343 33%
Thu Jun 30 15:51:50.029 118100 39366/second
Thu Jun 30 15:51:53.006 247700 41283/second
Thu Jun 30 15:51:55.432 check 9 354484
Thu Jun 30 15:51:56.040 imported 354483 objects

$mongoimport -d Tromso -c tromso_anji -type csv -file tromso_anji_second.csv -headerline
Connected to: 127.0.0.1
Thu Jun 30 15:52:20.006 Progress: 14903023/44253536 33%
Thu Jun 30 15:52:20.006 120600 40200/second
Thu Jun 30 15:52:23.158 250500 41750/second
Thu Jun 30 15:52:25.918 check 9 366162
Thu Jun 30 15:52:26.594 imported 366161 objects

Figure 8.1: Console of MongoDB import process

File tromso_anji_first.csv was imported in 1670.120s
Table tromso.tromso_anji has been used
354483 records imported

File tromso_anji_second.csv was imported in 1810.970s
Table tromso.tromso_anji has been used
366161 records imported

Figure 8.2: Console of MySQL import process

On the other hand, in MySQL database, the input data-set has been imported via Work-
bench bulk functions. More specifically, Workbench offers csv import function, which utilize

44

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

the import queries and optimize the input process. The output of Workbench is described by
Figure 8.2.

Figure 8.3: The data-set import performance of each data store in terms of time.

By inspecting the time that these two database systems, it is concluded that MongoDB
with its schema-less structure achieves to be faster than MySQL. More specifically, MongoDB
is around 280 times faster than MySQL and as it is presented by Figure 8.3, in both of csv files,
MySQL needed 28 and 30 minutes respectively, when MongoDB only 6 seconds.

However, this huge might be explained by the fact that MongoDB shell commands are
lighter than a whole GUI application which requires sources and time in order to optimize
and transform a csv file into a relational table. On the other hand, this is a disadvantage of
relational model. Moreover, the input csv files should be modified in order to compromise
with the structure of the relational table. Precisely, there was a need to add an extra column,
which indicates the primary key of the records, inside the csv file. This transformation was
done with the use of Microsoft Ecxel application and also consumed a considerable amount
of time. On the other hand, MongoDB behaves with high flexibility and speed.

45

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

8.4 RESULTS

In this section the results of the experiment are presented. Sub-Chapter 8.4.1 is an introduc-
tion, which illustrates all the aspects, which have been taken into account regarding experi-
ment execution. Each of the following subsection refers to one benchmark query of Section
8.2.1 and presents the results via tables and charts.

8.4.1 ASSUMPTIONS

The experiment has five phases. Every phase refers to one specific benchmark query. More
specifically, during each phase a specific query executed in both of the data-stores. Each
phase consists of ten query executions for each data-store. More specifically, all the exper-
iments in MySQL are done via Workbench platform and all the experiments in MongoDB
via Robomongo application. Something that must be mention is that Workbench calcu-
lates the duration of each query as a summary of Quer y dur ati on + Fetchi ng ti me and
Robomongo calculates the Quer y dur ati on as a whole. Because of that, there are two bars
in each chart regarding MySQL: one with Fetchi ng ti me and one without. Regarding the
charts, there five Google bar charts, one per phase. These bar charts focus on the difference
between the data-stores and this means that the visualization of the results is not normalized
in y-axis.

8.4.2 TIME-SERIES POSITIONING PER PLAYER

This query projects the position of a specific football player of Tromso IL according the time.
This output, which is presented by table 8.1, can be projected in a helicopter view, which
is very useful for a football manager because it shows the game performance in the same
way as the manager illustrates the tactics to his players, via the tactics board. Furthermore,
this specific view unravels cases of fault player’s positioning that a video recording hides.
The reason is the fact that a video does not show the whole field during a football game, but
focuses only on the part of the field where the ball is. As a result, during the performance
evaluation the coaching stuff can focus on only one player in the field.

Table 8.1: A sample of "Time-series positioning per player" query output.

X Y
32.6357 23.3484
32.6357 23.3484
32.6357 23.3484
32.6357 23.3484
28.7948 23.3488
28.7948 23.3488
28.7948 23.3488
28.7948 23.3488
28.7948 23.3488
28.7948 23.3488

46

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

The queries which have been created for this phase are the following:

Table 8.2: MySQL and Mongo queries for the first phase

SELECT x_pos as X, y_pos as Y db.getCollection(’tromso_anji’)
FROM tromso.tromso_anji .find({"tag_id":1}, {x_pos:1, y_pos:1})
WHERE tag_id=1;

As it can be seen by table 8.3, MongoDB has an average execution time 0.0145 seconds.
More specifically, MongoDB’s slowest execution time was 0.028 seconds and its fastest was
0.01 seconds. On the other hand, MySQL executed the query with average execution time
records 0.1375 seconds (excluding fetching time) and 0.274 seconds (including fetching time).
Precisely, the highest execution time records of MySQL were 0.215 seconds (excluding fetch-
ing time) and 0.432 seconds (including fetching time). In the same fashion, the lowest MySQL’s
execution time records were 0.251 and 0.14 seconds respectively.

Table 8.3: Execution time of "Time-series positioning per player" query.

Experiment MongoDB MySQL MySQL (without Fetch)
1st 0.028 0.432 0.215
2nd 0.011 0.255 0.124
3rd 0.01 0.251 0.135
4th 0.012 0.275 0.14
5th 0.013 0.245 0.127
6th 0.011 0.261 0.12
7th 0.01 0.264 0.156
8th 0.017 0.251 0.118
9th 0.022 0.253 0.123
10th 0.011 0.233 0.117

As a result, MongoDB was around 9.5 times faster than MySQL without taking into consid-
eration the fetching time and around 19 times faster if the fetching time is included. Moreover
as it can be seen by Figure 8.4, the average difference in execution time between MongoDB
and MySQL was 0.123 seconds (excluding fetching time) and 0.2595 seconds (including fetch-
ing time).

47

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Figure 8.4: Execution time of "Time-series positioning per player" query per data-store.

8.4.3 TIMES-SERIES POSITIONING PER TEAM

This query projects the position of a the whole team of Tromso IL according the time. This
output, which is presented by table 8.4, can be projected in a helicopter view and evaluate
Tromso IL in terms of tactics. As a result, the team’s positioning according the time can prove
the football theory, either can indicate the mistakes that Tromso IL commit during the match.

Table 8.4: A sample of "Times-series positioning per team" query output.

Player X Y
2 35.2178445647 30.1527231609
6 47.1549917658 19.9495456056
7 41.7908330116 49.8916943603
8 53.2812226712 41.9960580942
10 39.4537328082 33.2552685595
11 44.1981966373 28.8088977197
12 34.3806270711 38.5328679139
13 35.8532058624 22.6150295869
15 42.7558125501 42.2577470748
16 35.3014 47.5268

The queries which have been created for this phase are the following:

Table 8.5: MySQL and Mongo queries for the second phase

SELECT tag_id as Player, x_pos as X, y_pos as Y db.getCollection(’tromso_anji’)
FROM tromso.tromso_anji .find({ }, {tag_id:1, x_pos:1,_pos:1})
WHERE tag_id=1;

48

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

As it can be seen by table 8.6, MongoDB has an average execution time 0.002 seconds.
More specifically, MongoDB’s slowest execution time was 0.004 seconds and its fastest was
0.001 seconds. On the other hand, MySQL executed the query with average execution time
records 0.00526 seconds (excluding fetching time) and 1.596 seconds (including fetching time).
Precisely, the highest execution time records of MySQL were 0.034 seconds (excluding fetch-
ing time) and 1.6913 seconds (including fetching time). In the fashion, the lowest MySQL’s
execution time records were 0.013 and 1.5283 seconds respectively.

Table 8.6: Execution time of "Time-series positioning per team" query.

Experiment MongoDB MySQL MySQL (without Fetch)
1st 0.003 1.5374 0.034
2nd 0.001 1.5283 0.0013
3rd 0.004 1.6803 0.0023
4th 0.002 1.5832 0.0022
5th 0.001 1.5403 0.0013
6th 0.001 1.5662 0.0022
7th 0.002 1.5768 0.0038
8th 0.002 1.6913 0.0023
9th 0.001 1.6513 0.0013
10th 0.003 1.6049 0.0019

As a result, MongoDB has the same performance as MySQL without taking into consider-
ation the fetching time and around 845 times faster if the fetching time is included. Moreover
as it can be seen by Figure 8.5, the average difference in execution time between MongoDB
and MySQL was 0.00126 seconds (excluding fetching time) and 1.6909 seconds (including
fetching time).

Figure 8.5: Execution time of "Time-series positioning per team" query per data-store.

49

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

8.4.4 POSITION OVERLAPPING

Position overlapping occurs in a football match when a player tends to be in a place, where a
teammate of him should be. More specifically, this player leaves his position and acts inside
the area of his teammates. This event is not welcome, because the player leaves his place
unprotected and at the same time he bothers his teammates by reducing their space. In order
to achieve this query, it is recommended to apply a JOIN clause.

The SQL Joins clause in a database, combines records from two or more tables of this
specific database. More specifically, a JOIN combines fields from two tables by using values
common to each table. In our case, we would like to combine the only table, which exists in
the database with itself on the "x_pos" and "y_pos" fields. The result will be all the rows from
the original and the duplicate table where the join condition is met. In order to retrieve these
results, the following query has been formulated:

Table 8.7: SQL JOIN for the third experiment

SELECT *
FROM tromso.tromso_anji AS A
JOIN tromso.tromso_anji AS B ON FLOOR(A.x_pos) = FLOOR(B.x_pos)
WHERE FLOOR(A.y_pos) = FLOOR(B.y_pos)
AND A.tag_id <B.tag_id
AND SECOND(A.timestamp) = SECOND(B.timestamp)
AND MINUTE(A.timestamp) = MINUTE(B.timestamp)
AND HOUR(A.timestamp) = HOUR(B.timestamp);

However, any version of this JOIN performs poor. More specifically, either the query time
extends the limit of 90 minutes and it is aborted either the memory 12 Gb is not enough. As
a result, the combination of MySQL workbench with the specific hardware and input cannot
produce any results for this demand.

On the other hand MongoDB does not offers any option for JOIN at all. Trying to elaborate
why MongoDB cannot support JOIN clause the following explanation is given by the official
documentation. The advantages of MongoDB’s document data model is the fact that it is
flexible and provides developers many options in terms of modeling. The reason is that the
most of the time all the data for a record tends to be located in a single document. As a result,
for the operational application, accessing data is simple, high performance, and easy to scale
with this approach.

However, when it comes to analytics and reporting, it is possible that the data are stored
in multiple collections. MongoDB does not support joins. A solution could be the fact that
some data is denormalized, or stored with related data in documents to remove the need for
joins. Unfortunately, there are cases that this technique cannot be applied.

In general MongoDB applications use two well-known methods for relating documents:

• Manual references where the _id field of one document is saved in another document
as a reference. Trying to make a connection with SQL this technique is like the external
key use. As a result, inside the main query, a second query can be implemented, which

50

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

returns the related data. These references are simple and sufficient for most use cases.

• DBRefs which are references from one document to another using the value of the
first document’s fields, such as _id field, collection name, and, optionally, its database
name. More specifically, with DBRefs allow documents located in multiple collections
to be more easily linked with documents from a single collection. To resolve DBRefs,
additional queries must be performed in order to return the referenced documents.

To sum up, this phase of the experiment failed.

8.4.5 AVERAGE SPEED PER PLAYER

This query projects the average speed of each football player of Tromso IL. This output, which
is projected by table 8.8 consists of a useful metric for effort measurement. Since football has
become a show, nowadays, fans get excited for twinkle-toed stars and attractive, eye-catching
football. However, coaches claim that there is no substitute for good, old-fashioned effort. As
effort, the coaching community defines the football player’s dedication to the tactics plan.
Football tactics are demanding in terms of positioning and they demand the players to be in
constant movement in order to fulfill their obligations. As a result, a good metric of players’
effort is the average speed during the game. Fifa claims that a football game is everything but
an average running speed. It is more a series of explosive situations [48]. However, a football
player who actually works hard during the game and runs constantly has a higher average
speed than a fastest but "lazy" teammate.

Table 8.8: A sample of "Average speed per player" query output.

Player AverageSpeed
1 0
2 1.9937899483034127
3 0
4 0
5 0.10651108360005974
6 2.362199170637215
7 1.8580462111975549
8 2.215603094642742
9 0.0661225283958499
10 2.281123177099688

The queries which have been created for this phase are the following:

Table 8.9: MySQL and Mongo queries for the fourth phase

SELECT tag_id as Player, AVG(speed) as AverageSpeed db.getCollection(’tromso_anji’)
FROM tromso.tromso_anji .aggregate([{$group: {_id:’$tag_id’,
GROUP BY tag_id AverageSpeed: {$avg:’$speed’} } }])

51

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

As it can be seen by table 8.10, MongoDB has an average execution time 0.6878 seconds.
More specifically, MongoDB’s slowest execution time was 0.794 seconds and its fastest was
0.66 seconds. On the other hand, MySQL executed the query with average execution time
records 0.4753 seconds (for this query, fetching time was close to 0.0001 second and, as a
result, it is not included, since it is not affecting the results). Precisely, the highest execution
time records of MySQL was 0.58 seconds and the lowest was 0.422 seconds.

Table 8.10: Execution time of "Average speed per player" query.

Experiment MongoDB MySQL
1st 0.794 0.462
2nd 0.699 0.58
3rd 0.672 0.484
4th 0.66 0.523
5th 0.667 0.502
6th 0.669 0.435
7th 0.678 0.422
8th 0.664 0.44
9th 0.678 0.455
10th 0.697 0.45

As a result, MySQL was around 1.5 times faster than MongoDB. Moreover as it can be seen
by Figure 8.6, the average difference in execution time between MongoDB and MySQL was
0.2125 seconds.

Figure 8.6: Execution time of "Average speed per player" query per data-store.

52

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

8.4.6 TEAM FORMATION BY PLAYER’S MEDIAN POSITIONING

This query projects the median position of each player of Tromso IL. This output, which is
presented by table 8.11, can be projected in a helicopter view, which can show which is the
natural position the players. More specifically, this view can indicate the center of the area,
where a player moves during the match and after comparing this area with the tactics, a coach
can conclude if this player matches to his current or to another position inside teams forma-
tion. Moreover, this team’s view either can prove team’s formation, either can indicate a new
formation for this specific team.

Table 8.11: A sample of "Team formation by player’s median positioning" query output.

Player MedianX MedianY
1 31.591419600300448 20.84892256026343
2 49.573679231745764 36.15064125849095
3 71.05233086857395 71.85746803105224
4 69.60789999999999 70.26800000000001
5 44.30664857490613 66.81009417634121
6 46.81089716353267 33.56421631533662
7 53.560309413904186 45.25000258615213
8 48.9803184664832 38.33945179307242
9 44.77807486006899 65.34691900267752
10 49.60221696827333 36.704427571323

The queries which have been created for this phase are the following:

Table 8.12: MySQL and Mongo queries for the fifth phase

SELECT tag_id as Player, AVG(x_pos) as MedianX, db.getCollection(’tromso_anji’)
avg(y_pos) as MedianY .aggregate([{ $group: {_id:’$tag_id’,
FROM tromso.tromso_anji MedianX: { $avg:’$x_pos’} ,
GROUP BY tag_id MedianY: { $avg: ’$y_pos’} }])

As it can be seen by table 8.13, MongoDB has an average execution time 0.7329 seconds.
More specifically, MongoDB’s slowest execution time was 0.783 seconds and its fastest was
0.71 seconds. On the other hand, MySQL executed the query with average execution time
records 0.4896 seconds (for this query, fetching time was close to 0.0001 second and, as a
result, it is not included, since it is not affecting the results). Precisely, the highest execution
time records of MySQL was 0.582 seconds and the lowest was 0.427 seconds.

As a result, MySQL was again around 1.5 times faster than MongoDB. Moreover as it can be
seen by Figure 8.7, the average difference in execution time between MongoDB and MySQL
was 0.2433 seconds.

53

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Table 8.13: Execution time of "Team formation by player’s median positioning" query.

Experiment MongoDB MySQL
1st 0.71 0.478
2nd 0.724 0.487
3rd 0.745 0.427
4th 0.733 0.491
5th 0.715 0.468
6th 0.717 0.45
7th 0.74 0.563
8th 0.742 0.471
9th 0.72 0.582
10th 0.783 0.479

Figure 8.7: Execution time of "Team formation by player’s median positioning" query per
data-store.

54

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

9 DISCUSSION

In this section a discussion takes place regarding the comparison between SQL and NoSQL
data stores. More specifically, this discussion is based to the previous sections of this docu-
ment and it is split into two parts. The former refers to the theoretical part, which is placed in
Chapter 4, Chapter 5, Chapter 6 and Chapter7. The latter focuses on the experimental part,
which is described in Chapter 8. After these two parts, there is a conclusion with the finals
thoughts regarding this work.

9.1 SQL VS NOSQL

By inspecting the theoretical part of this work, some interesting conclusions can be made:

NoSQL cannot supersede SQL A good parallelism would be like claiming that boats were
superseded by cars because of the fact that cars consist of a newer technology. Of
course SQL and NoSQL do the same thing: both of them store data. However, they
apply different approaches, which are more or less suitable than the other for a project.
As a result, the nature of the project will introduce if NoSQL is a replacement for SQL
for this specific project. Despite of that, in general, the feeling newer technology does
not equal that NoSQL a replacement for SQL. The proper term would be an alternative.

NoSQL is not better or worse than SQL Trying to extend the first conclusion, a remark
must be mentioned: not all the project are the same, in terms of demands. For some
projects, a SQL database is more suitable and for some others, the requirements are
better suited to a NoSQL database.

Between SQL and NoSQL, there is not a clear distinction Any claim regarding clear dif-
ferences between these two data stores is not necessarily true. More specifically, a lot
NoSQL databases are adopting SQL features and vice versa. In many cases, accord-
ing the time the choices between SQL and NoSQL are likely to become increasingly
darken. In addition, in the near future some NewSQL hybrid databases could provide
some brand new features which will make the distinction between SQL and NoSQL to
difficult.

As a result, there is no clear answer to the question "SQL or NoSQL", because each data
store has advantages, disadvantages and similarities with the rest. Whatever holds for the
programming languages can be assumed also for the database. Each database and technol-
ogy should be evaluated according to a specific project and specific demands.

9.2 MYSQL VS MONGODB

In contrast with the previous section, by observing the results of the experimental part, some
more technical conclusions can be made about the "SQL vs NoSQL", regarding the needs of
the "Soccer Video and Player Position Data-set" project, which is introduced in Chapter 3.
The conclusions are based on the comparison between MySQL and MongoDB - the two most
popular SQL and NoSQL databases in 2016 and are organized in the following way:

55

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

Tables vs Documents MySQL provides a store of related data tables. More specifically, ev-
ery row is a different record, with strict structure and field types. On the other hand,
MongoDB stores data in JSON-like field-value pair documents, which can be stored in
collections. The main difference between MongoDB and MySQL is the fact that in the
former the user do not have restrictions regarding the field types. MySQL tables have
a strict data template. As a result they are demanding in data-types and at the same
time they are not prone to mistakes. Practically, this means that MySQL database vali-
dates the input data in terms of data-types, which can cause slow performance when a
project requires just tank, which can store data that will be evaluated in the application
level. On the opposite side, MongoDB is more "flexible" and "forgiving", but this can
lead to consistency issues.

Schema vs Schemaless In MySQL database, before any action a schema is required. This
means that before input any data, the database should have all required the tables and
their field data-types. In addition, the schema should involve other information like:

primary keys - values, which uniquely identifies each record in a database table.

indexes - data structures, which improve the speed of data retrieval operations

relationships - logical connections between data fields

To sum up, MySQL schema must be produced before any data input and manipulation.
In addition, it is difficult to change, in the future except some updated which might
destroy the normalization of the database form.

On the other hand, in a MongoDB database, data can be added freely anytime and any-
where. More specifically, there are no restrictions for the user to specify any document
design or even a collection up-front. Consequently, MongoDB database may be more
suited to projects where the initial data requirements are unknown or difficult to be
specified.

Performance The most interesting part of this discussion and the most difficult to be de-
fined is the performance race of these database systems. In other words, the ques-
tion which system is fastest cannot be simply answered. Theory claims that NoSQL
is faster than SQL in terms of querying. NoSQL’s (MongoDB in this case) simpler de-
normalized store allows user to retrieve all the information about a specific record in a
single request. This is also proven by the fact that in phase one and two of experimen-
tal part, MongoDB was from 10 to 845 times faster than MySQL. On the other hand,
for more complex queries, which require calculation, such as the phase four and five
of the experimental part, MySQL performed 1.5 times better than MongoDB. Some-
thing that must be mentioned again is that, always, the project design and data re-
quirements have the most impact on performance. More specifically, a well-designed
MySQL database performs better than a poorly designed MongoDB equivalent and vice
versa.

Relational JOIN A very popular aspect of MySQL is the powerful JOIN clause. More specifi-
cally, JOIN clause offers to the user the ability to obtain data from multiple tables using

56

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

just a single SQL statement. However, MongoDB has no equivalent of JOIN, and this
is a huge disadvantage for those for who want to switch from SQL to NoSQL. A so-
lution for this problem is to normalize the collections and manually link the relevant
records between different collections. As a result, for project where the information
retrieval across different relations are essential, then SQL is the only way. In practice,
the third phase of experimental part failed, because Mongo couldn’t implement a JOIN
and MySQL JOIN failed.

SQL vs NoSQL Scaling Dealing with big data requires systems, which can adapt as data
grows. A typical example is the moment when it is necessary to distribute the load of
the data among multiple servers. This is not trivial for SQL-based systems since the
whole database is stored in one server. Of course there are solution such as cluster-
ing: multiple servers have access to the same central store. On the other hand, NoSQL’s
simpler data models can achieve an easier process of the data, and many, such as Mon-
goDB, have been built with scaling functionality. As a result, for project which require
horizontal scaling, NoSQL seems to be ideal.

9.3 SUMMARY

To sum up, NoSQL and SQL databases treat the same needs in different ways. As software
evolution indicates, the requirements change according time, and thus it is possible one
database which seems ideal for a specific application to become an issue in the near future.
All this work conclude to the following proposals:

SQL fits to projects :

• with logical related discrete data requirements which can be identified up-front

• when data integrity is essential

• when standards-based proven technology with good developer experience and
support is needed

NoSQL fits to projects :

• with unrelated, indeterminate or evolving data requirements

• with simpler or looser project objectives, able to start coding immediately

• when speed and scalability is imperative.

In the case of input data 3, a NoSQL database appears the most practical option if the
main intention of the database is to store data which will be retrieved by an application for a
visual project. On the other hand, if the data are stored in order to apply analytics or business
intelligence then SQL database is the solution.

57

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

10 FUTURE WORK

Since NoSQL and Big Data, are newborn fields of our science there are a lot of parameters,
which could be improved in this work, in order to offer a better overview of this SQL vs NoSQL
comparison

10.1 NOSQL DBMS

In the same framework more NoSQL databases can be examined. According to http:db-
engines.com:, the NoSQL of the top-30 DBMS, which are not included in this work are the
following:

• Hadoop/Hbase

• Hypertable

• RavenDB

• Redis

• Amazon DynamoDB

• CouchBase

10.2 INPUT

Despite the football analytics, NoSQL databases can be used in every possible project which
requires data storage. However, there are two major categories, in which data storage require-
ments are split and according to them the the project are divided into

Transactional (On-line Transaction Processing - OLTP) , which are described by a large
amount of short on-line transactions. The main purpose for an On-line Transaction
Processing project is achieve very fast query processing, data integrity in multi-access
environments and effectiveness.

Analytical (On-line Analytical Processing - OLAP) , which are outlined by low num-
ber of transactions. In On-line Analytical Processing data store, queries are complex
and involve aggregations. Moreover, as in On-line Transaction Processing case, the re-
sponse time is an effectiveness measure.

This work investigates the advantages of NoSQL data stores as OLTP database systems. It
would be an interesting project for the future, a research regarding the capability of NoSQL
to fulfill OLAP requirements.

58

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

REFERENCES

[1] "Benchmarking Cassandra Scalability on AWS - Over a million writes per second". Re-
trieved January 27, 2015.

[2] "The importance of user-friendly technology" By Dave Kearns. Network World. Retrieved
January 27, 2015.

[3] "An Introduction To NoSQL & Apache Cassandra". Retrieved January 27, 2015.

[4] "Soccer video and player position data-set": S. A. Pettersen, D. Johansen, H. Johansen,
V. Berg-Johansen, V. R. Gaddam, A. Mortensen, R. Langseth, C. Griwodz, H. K. Stensland,
and P. Halvorsen, in Proceedings of the International Conference on Multimedia Systems
(MMSys), Singapore, March 2014. Retrieved January 27, 2015.

[5] "Introduction to Document Databases with MongoDB". This article originally appeared
in the June 2013 issue of Web & PHP. Retrieved May 21, 2015.

[6] Exploring the Different Types of NoSQL Databases Part II. Retrieved June 1, 2015.

[7] "NoSQL distilled": A brief guide to the emerging world of polyglot persistence. Pramod
J.Salalage, Martin Fowler.

[8] "Introduction to MongoDB".Official Documentation of MongoDB. Retrieved May 21,
2015.

[9] "MongoDB System Properties".DB-Engines. Knowledge Base of Relational and NoSQL
Database Management System. Retrieved May 26, 2015.

[10] "Introduction to MongoDB Query Language". Safari Professional Books. Retrieved May
21, 2015.

[11] "Do Things Big". Official Documentation of MongoDB. Retrieved May 26, 2015.

[12] MongoDB Source Code. Official Documentation of MongoDB. Retrieved May 26, 2015.

[13] "3,000+ messages each month on the user forum".Retrieved May 26, 2015.

[14] "Public Production Deployments".Retrieved May 26, 2015.

[15] Lots of job postings for MongoDB devs.Retrieved May 26, 2015.

[16] 100,000+ downloads/month for MongoDB. Retrieved May 26, 2015.

[17] "User groups and events There were 500+ people at MongoSV, we expect a similar
turnout for MongoSF, and there are user groups in many cities. e.g. the NY MUG has over
700 members". Retrieved May 26, 2015.

[18] Meet Azure DocumentDB. Official webpage of Azure DocumentDB. Retrieved May 27,
2015.

59

http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://www.networkworld.com/article/2206684/security/the-importance-of-user-friendly-technology.html
http://abiasforaction.net/an-introduction-to-apache-cassandra/
http://home.ifi.uio.no/paalh/publications/files/mmsys2014-dataset.pdf
http://derickrethans.nl/introduction-to-document-databases.html
http://www.3pillarglobal.com/insights/exploring-the-different-types-of-nosql-databases
http://www.mongodb.org/about/introduction/
http://db-engines.com/en/system/MongoDB
https://www.safaribooksonline.com/library/view/mongodb-and-python/9781449312817/ch02s06.html
http://www.mongodb.com/mongodb-scale
http://www.mongodb.org/about/source-code/
http://markmail.org/search/?q=mongodb#query:mongodb%20list%3Acom.googlegroups.mongodb-user+page:1+state:facets
http://www.mongodb.org/display/DOCS/Production+Deployments
http://www.indeed.com/jobs?q=mongodb&l=
http://markmail.org/search/?q=mongodb#query:mongodb%20list%3Acom.googlegroups.mongodb-user+page:1+state:facets
http://www.mongodb.org/display/DOCS/MongoDB+User+Groups+%28MUGs%29 10gen.com/events
http://www.mongodb.org/display/DOCS/MongoDB+User+Groups+%28MUGs%29 10gen.com/events
http://www.mongodb.org/display/DOCS/MongoDB+User+Groups+%28MUGs%29 10gen.com/events
http://azure.microsoft.com/en-us/services/documentdb/

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

[19] Meet Azure DocumentDB. "Introducing DocumentDB" by David Chappell. Retrieved
June 2, 2015.

[20] Manage DocumentDB capacity needs. Retrieved June 2, 2015.

[21] "Introduction to Apache Cassandra". White papper by Datastax Corporation. Retrieved
June 2, 2015.

[22] Official Apache Cassandra web-page. Retrieved June 10, 2015.

[23] "Why does Scalability matter, and how does Cassandra scale?". Retrieved June 10, 2015.

[24] DB-Engines Ranking. The DB-Engines Ranking ranks database management systems
according to their popularity. The ranking is updated monthly. Retrieved June 2, 2015.

[25] "Real-time business intelligence is going mainstream, thanks in part to the Storm and
Spark open source projects. Here’s how to choose between them". Retrieved June 11, 2015.

[26] "Real-time business intelligence is going mainstream, thanks in part to the Storm and
Spark open source projects. Here’s how to choose between them". Retrieved June 11, 2015.

[27] Apache Storm official web-page. Retrieved June 11, 2015.

[28] Apache Storm vs. Apache Spark. Retrieved June 11, 2015.

[29] Introduction to Apache Storm on HDInsight: Real-time analytics for Hadoop.. Retrieved
June 11, 2015.

[30] Introduction to Apache Storm. Retrieved June 11, 2015.

[31] "Basic Storm Concepts". Retrieved June 11, 2015.

[32] SQL for Apache Storm. Retrieved June 11, 2015.

[33] Chapter 1. "Introduction to Data Analysis with Spark". Retrieved June 11, 2015.

[34] Introduction to Apache Spark with Examples and Use Cases. Retrieved June 11, 2015.

[35] Big Data Processing with Apache Spark âĂŞ Part 1: Introduction. Retrieved June 11, 2015.

[36] Spark Community. Retrieved June 11, 2015. https://spark.apache.org/community.html

[37] Travelling salesman problem. Retrieved November 4, 2015.

[38] "DB-engines/Neo4j". The DB-Engines Ranking ranks database management systems
according to their popularity. The ranking is updated monthly. Retrieved November 4,
2015.

[39] Neo4j Graph Database Official web-site. Retrieved November 4, 2015.

[40] "Cypher". About Cypher. Retrieved November 21, 2015.

60

http://www.davidchappell.com/writing/white_papers/Introducing-DocumentDB--Chappell-v1.1.pdf
http://azure.microsoft.com/en-us/documentation/articles/documentdb-manage/
http://www.datastax.com/wp-content/uploads/2012/08/WP-IntrotoCassandra.pdf
http://cassandra.apache.org/
http://www.datastax.com/dev/blog/why-does-scalability-matter-and-how-does-cassandra-scale
http://db-engines.com/en/ranking
http://www.infoworld.com/article/2854894/application-development/spark-and-storm-for-real-time-computation.html
http://www.infoworld.com/article/2854894/application-development/spark-and-storm-for-real-time-computation.html
http://www.zdatainc.com/2014/09/apache-storm-apache-spark/
http://www.zdatainc.com/2014/09/apache-storm-apache-spark/
https://storm.apache.org/
http://www.zdatainc.com/2014/07/real-time-streaming-apache-storm-apache-kafka/
http://www.datastax.com/wp-content/uploads/2012/08/WP-IntrotoCassandra.pdf
http://blogs.msdn.com/b/bluewatersql/archive/2015/02/24/introduction-to-apache-storm.aspx
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_user-guide/content/ch_storm-using-basic-concepts.html
http://www.sqlstream.com/storm/
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch01.html
http://www.toptal.com/spark/introduction-to-apache-spark
http://www.infoq.com/articles/apache-spark-introduction
https://spark.apache.org/community.html
https://en.wikipedia.org/wiki/Travelling_salesman_problem
http://db-engines.com/en/system/Neo4j
http://neo4j.com/product/"
http://neo4j.com/developer/cypher-query-language/

NOSQL DATABASE SYSTEMS FOR PROFESSIONAL FOOTBALL ANALYTICS

[41] "Neo4j News: Introducing Neo4j 2.2". Retrieved November 21, 2015.

[42] " How to connect to Neo4j?". Retrieved November 21, 2015.

[43] "Understanding Neo4j Scalability". David Montag. January 2013. Retrieved November
21, 2015.

[44] "OrientDB official webpage". Retrieved December 7, 2015.

[45] "Why OrientDB?". Retrieved November 21, 2015.

[46] "API OrientDB". Retrieved November 21, 2015.

[47] "Magic Quadrant for Operational Database Management Systems". Retrieved Novem-
ber 21, 2015.

[48] "Physical Analysis of the FIFA Women’s World Cup Germany 2011". Retrieved November
21, 2015.

61

http://neo4j.com/news/introducing-neo4j-2-2-worlds-fastest-scalable-native-graph-database/
http://neo4j.com/developer/language-guides/
http://info.neo4j.com/rs/neotechnology/images/Understanding%20Neo4j%20Scalability%282%29.pdf
http://orientdb.com/orientdb/
http://orientdb.com/why-orientdb/
http://orientdb.com/docs/2.1/Programming-Language-Bindings.html
https://www.gartner.com/doc/2610218
http://www.fifa.com/mm/document/footballdevelopment/technicalsupport/01/68/06/99/fwwcphysicalanalysis-ee.pdf

	Introduction
	The need of Database Management
	What is Database Management System
	What is a SQL Database System
	What is a NoSQL Database System
	SQL vs NoSQL

	Concept Idea
	Scalability
	Productivity
	Metrics

	Examined Data-set
	Soccer Video and Player Position Data-set
	Data-set format

	Document Stores
	Suitable cases
	Unwarranted cases
	MongoDB
	Query Language
	SQL to MongoDB Mapping
	Scalability
	Availability & Community

	Azure DocumentDB
	Query Language
	Scalability
	Availability & Community

	Apache Cassandra
	Query Language
	Scalability
	Availability & Community

	Comparison
	Query language
	Supported drivers
	Support
	Summary

	Stream Stores
	Apache Storm
	Architecture
	Scalability
	Storm Users

	Apache Spark
	Architecture
	Spark Users

	Comparison

	Graph Stores
	Suitable cases
	Examined databases systems
	Neo4j
	Query Language
	Scalability
	Availability & Community

	OrientDB
	Query Language
	Scalability
	Availability & Community

	Comparison
	Query Language
	Scalability
	Support
	Operational DBMS
	Summary

	No NoSQL Databases
	Experimental part
	Scenario
	Experiment set-up
	Benchmark queries

	Implementation
	Data-set import

	Results
	Assumptions
	Time-series positioning per player
	Times-series positioning per team
	Position overlapping
	Average speed per player
	Team formation by player's median positioning

	Discussion
	SQL vs NoSQL
	MySQL vs MongoDB
	Summary

	Future Work
	NoSQL DBMS
	Input

